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Abstract

This research has explored the problems of moving through an environment while avoiding obstacles,
approaching and stably contacting a surface in that environment, and applying force to the surface. To this
end, a theoretical and experimental analysis of the following topics has been performed: explicit force and
impedance control, impact control, and obstacle avoidance and approach with artificial potentials.

The issue of force control has been addressed in two ways. First, a dynamic model of the manipulator /
sensor / environment system has been theoretically developed and experimentally verified. With this model
it has been possible to perform the second step of a detailed analysis of previously proposed force control
schemes. Moreover, a theoretical framework has been developed which encompasses most control schemes
proposed to date, including impedance control and explicit force control. This framework has provided a
means by which to compare the stability properties of the various schemes. This theoretical analysis has been
supported by experimental implementation and analysis on the CMU DDarm II.

The theoretical framework developed for force control, also yielded new insight into the problem of
transition from motion through the environment to contact with it. During this transition there is impact. The
developed force control framework revealed a new method of effectively controlling the impact phase and
providing stable transition. This scheme has also been successfully implemented on the CMU DDarm II.

To move through an obstructed environment (possibly with moving obstacles) a local obstacle avoidance
scheme based on superquadric artificial potentials has been developed. This potential formulation blends
the best features of previous ones by eliminating local minima for simple environments, while not unneces-
sarily removing some parts of workspace. Two forms of the potential energy function provide either object
avoidance or approach capability. This scheme has been implemented on the CMU DDarm II and has shown
successful avoidance of multiple obstacles in real-time.
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Chapter 1

Introduction

A very general description of a robot manipulator is a non-rigid mechanical assembly with actuating devices
that exert forces along the degrees of freedom. Usually the assembly is composed of rigid links, but increas-
ingly flexible links are being employed. Usually the links are made of metal, but alternative materials are
sometimes utilized. Usually the links are connected serially (like the bones of an ‘arm’), but sometimes there
are parallel connections. Usually the connections are rotary, but sometimes they are prismatic. Usually the
forces are exerted by electric motors, but often there are hydraulic or pneumatic actuation systems. Inde-
pendent of the particular manifestation of the robot manipulator, the problem that remains is tocontrol it, or
dictate its behavior. More specifically: given a manipulator, how should the actuating devices be commanded,
such that the proper forces are exerted along the degrees of freedom, resulting in a desired behavior?

Preliminary to answering the control question is the need for a description of the desired behavior. In
general, the desired behavior of a manipulator is to do useful work on the environment, or tomanipulateit.
(The environment being everything that is not part of the robot, and within its reach.) By formal definition
and heuristic description, work always entails force and motion. Thus, the manipulator must move to specific
locations in its environment and impart specific forces. There are three distinct phases to this process: motion
through the environment, impact with the environment, and exertion of forces on the environment. The
purpose of this dissertation is to examine ways to provide a manipulator with the ability to perform well in
each of these phases, and to smoothly move from one phase to another.

Motion through the environment can be completely described in terms of the position of the manipulator.
Impact and forceful interaction with the environment require a description in terms of force as well as posi-
tion. Thus we can see that a specific description of the desired behavior of a manipulator can be provided
in terms of the positions it occupies and possibly the forces it exerts. (The derivatives of these quantities,
such as velocity, may be obtained from them directly.) We can therefore rephrase the above statement of the
control problem: How should the actuating devices be commanded such that the manipulator occupies the
desired position and exerts the desired force on the environment?

Implicit in the statement of this problem is the ability to monitor the actual position of the manipulator
and the forces exerted by it. If this is not done, it is impossible to determine the performance of the robot
arm. However, if this is done the commands to the actuating devices are a function not only of the desired
position and force values, but also of the measured ones. This process is known asfeedback control. The
function that relates the desired and measured values to the actuation command is called thecontroller. Thus,
it is the controller that is key to our problem, which can be rephrased once again: What are the best position
and force controllers for robot manipulators?

The qualitative description of ‘best’ is usually supported with many quantitative measurements: stability,
rise time, overshoot, settling time, steady-state error, tracking error, algorithmic complexity, control rate, etc.
Usually there is a trade-off in performance between each of these. And how each of these should relate to
the desired task is often unclear. What usually is clear is whether a particular controller is sufficient for the
desired task. An appraisal of this sufficiency can usually be obtained from the above criteria.

1
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Figure 1.2: Explicit force control block diagram.

In an attempt to achieve sufficiency, simple schemes are usually tried first. It is common that the controller
be composed of a simple differencing between the desired and measured values. This difference may then be
multiplied by a proportionality constant (P control), differentiated (D control), and/or integrated (I control).
PID control is often incorporated into more sophisticated schemes, yielding better results.

Thus, when position control was historically selected first to be investigated, PID position controllers were
the choice. However, position controllers have evolved from simple PID joint controllers to very sophisti-
cated algorithms that include dynamic model calculations, Cartesian space projections of errors, velocity and
acceleration feedback, adaptive gains, optimization, etc. Figure 1.1 shows the block diagram of a generic
position control scheme. Each of the above controllers are represented by the block lettered G.

The state of the art of manipulator position control far exceeds that of manipulator force control. In
fact, position controlled manipulators can be used to perform some tasks that require interaction with the
environment, such as pick and place operations and spot welding. However, these allowed tasks usually
require that the manipulator does not contact a stiff, mechanically grounded environment. Such contact can
result in large reaction forces exerted on the arm for very small position errors. Since many manipulators are
not backdriveable because of their gearing, these reaction forces will cause damage to the manipulator. Also,
the environment may be damaged by this excessive force. One simplistic solution is to insert mechanical
compliance between the position controlled manipulator and the environment. However, this compliance is
open loop, and adds uncontrolled degrees of freedom to the manipulator structure.

Further, there are a whole class of tasks that seem to implicitly require force control of the manipulator:
pushing, scraping, grinding, pounding, polishing, twisting, etc. Thus, force control of the manipulator be-
comes necessary in at least one of the degrees of freedom of the manipulator; the other degrees of freedom
remain position controlled. Mason formalized this idea and called it Hybrid Control [45]. Simply put, the
manipulator should be force controlled in directions in which the position is constrained by environmental
interaction, and position controlled in all orthogonal directions.

The Hybrid Control formalism does not specify what particular type of position or force control should
be used. It only partitions the space spanned by the total degrees of freedom into one subspace in which po-
sition control is employed, and another in which force control is employed. In the position control subspace,
the previously mentioned strategies remain successful. However, in the force control subspace, two main
conceptual choices have emerged:explicit force controlandimpedance control. Figures 1.2 and 1.3 are
simple block diagrams of these two types of control schemes. The major difference between these schemes
is the commanded value: explicit force control requires commanded force, while impedance control requires
commanded position. In order for these to be feedback controllers, explicit force control needs force mea-
surement, while impedance control needs position measurement. In addition, impedance control requires
force measurement — without it an impedance controller reduces to a position controller.

These force control strategies must perform two specific functions. First, they must provideimpact con-
trol: stability during the transient phase of impact with the environment. Second, they must provideforce
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trajectory trackingcapability. It is not necessary or expected that a controller which is best for impact control
is also best for force tracking. The study of force controllers in this thesis will conclusively determine which
form is best for each function.

Ideally, an explicit force controller attempts to make the manipulator act as pure force source, independent
of position. Like position control, the obvious first choice has been some manifestation of PID control (i.e.
P, PD, PI, etc.). These have met with varying amounts of success depending on the characteristics of the
particular actuators, arm links, sensor, and environment. All of these components have dynamics which may
be excited during constrained motion. Therefore, considering the success of complex position controllers, it
may be valuable to include some of the following in force control algorithms: extensive models of the above
dynamic components (possibly non-linear), adaptive compensation, friction compensation, etc. But these
more complex control schemes will probably include PID control within them, and the best form of PID has
not been conclusively shown before. Therefore, much of this thesis has concentrated on understanding PID
control as an explicit force controller.

Alternatively, impedance control has been presented as a method of stably interacting with the environ-
ment. This is achieved by providing adynamicrelationship between the robot’s position and the force it
exerts. A complete introduction to impedance control is beyond the scope of this discussion and the reader
is referred to the previous work of other researchers [22, 28]. The basic tenet of impedance control is that
the arm should be controlled so that it behaves as a mechanical impedance to positional constraints imposed
by the environment. This means that the force commanded to the actuators is dependent on its position:
f = Z(x), whereZ may be a function or an operator. If the impedance is linear, it can be represented in the
Laplace domain asF (s) = Z(s)X(s). (For comparison, an equivalent and possibly more familiar electrical
impedance equation relates voltage to current:V (s) = Z(s)i(s).) The resultant behavior of the manipulator
is obvious: if it is unconstrained it will accelerate; if it is constrained the forces from the actuators will be
transmitted through the arm and exerted on the environment.

In the first case of no environmental interaction, the impedance relation may be used to dictate the force
exerted on the manipulator by its actuators as a function of the position of the end effector. This force as
a function of position may be fully described in terms of a potential field. Sophisticated position control
strategies can be devised by suitable construction ofartificial potentialsthat model the environment yet do
not really exist in it. This thesis presents a new strategy based on superquadric artificial potentials that is
useful for object avoidance and approach.

However, the artificial potential formulation as a position control method is essentiallyopen loopimpedance
control — open loop with respect to real, measurable forces. When dealing with the second case of physical
environmental interaction, force feedback must be used in the control of the mechanical impedance of the
manipulator. For linear impedance relationships, the force feedback loop may be separated as in Figure 1.4.
Further, it can be seen that this figure may be modified as in Figure 1.5 to show that the force feedback loop
is part of an internal explicit force controller. Thus, an impedance controller that utilizes force feedback
contains an explicit force controller.

Figure 1.5, as simple as it may be, summarizes this entire thesis. First, it can be seen that an arm /
environment model is necessary for the plant of the system. This model is developed in the next chapter.
Second, an explicit force controller is present in the system. A theoretical analysis of a complete spectrum of
explicit force control strategies is given in Chapter 3. Third, the outer position loop indicates that this is an



CHAPTER 1. INTRODUCTION 4

1u

2u

1

2

xc I

I

mx

mf
Arm/Environment

Figure 1.4: Impedance control block diagram with the controller divided into its position part,I1, and its
force part,I2.

xm

EXPLICIT FORCE CONTROLLER

and force feedback
Arm/Environment= u = fu c1

1= GIcx fm
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impedance controller. A theoretical analysis of a complete spectrum of impedance control strategies is given
in Chapter 4. Fourth, the presence of both force and position state variables indicates that the system must
cope with moving through the environment to contact with it. The control of the intervening period of impact
is discussed in Chapter 5. Chapter 6 provides experimental results which strongly support the conclusions
of the force, impedance, and impact control chapters. Also, the structure of the controller does not preclude
the substitution of a calculated (instead of measured) quantity for the feedback force. Chapter 7 presents a
method of object avoidance and approach that relies on such artificial forces.

Finally, it is noteworthy that the order of presentation in this dissertation is the reverse of the physical
sequence of motion through the environment, impact, and force exertion. The inversion of the order was
apparent in the above breakdown of the components of the controller block diagram of Figure 1.5. This
reverse order permits the understanding of each underlying layer of the problem in turn, facilitating the step
by step understanding of a complete problem solution.



Chapter 2

The Arm, Sensor, and Environment
Model

2.1 Introduction

In the previous chapter a general description of controllers was given without any specific description of the
arm or environment that formed the plant to be controlled. To discuss the controllers more specifically, it is
first necessary to develop a detailed model of the arm, sensor, and environment system. Also, it is necessary
to convincingly demonstrate that this model is an accurate and sufficient representation of the plant for which
the controller will be developed. Previous research has not experimentally evaluated the correctness of the
plant model or only done so on a one degree of freedom (DOF) system [13, 14, 31, 74]. In this chapter,
models of increasing complexity will be discussed. Then, experimentation with a six DOF manipulator will
show the validity and sufficiency of the chosen arm / sensor / environment model.

2.2 The Arm Model

A full description of the dynamics of a serial,n DOF, rigid-link robot arm is provided by the following
equation:

� = D(�)�� + h(�; _�) + g(�) + V ( _�) (2.1)

where� is a vector of the joint torques,D is the inertia matrix,h is a vector of the nonlinear Coriolis
and centripetal forces,g is a vector of the gravitational forces,V is a vector of the passive damping forces
(possible non-linear), and� is a vector of the angular joint positions. All vectors aren�1, all matricesn�n.
A full development of this equation can be found in [16].

In this discussion it is assumed thatg, andV either do not exist or are eliminated by some form of active
compensation. For an earth based robot,g may be compensated for by a feedforward signal; a space based
arm, however, would need no such compensation. For a direct drive armV does not exist; for a viscously
damped arm it may be eliminated by active feedback [10].

Thus, without any loss of generality, the manipulator may be represented simply by an equation that
includes joint torques, inertia, and acceleration:

� = D(�)�� + h(�; _�) (2.2)

In Section 4.4.3 it will be shown that if the arm is not in a singular configuration, the inverse of the Jacobian
may be used to express this dynamic relationship in Cartesian space as:

F = �(�)�x+ �(�; _�) (2.3)

5
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where
�(�) = (JD�1JT )�1 (2.4)

and
�(�; _�) = �� _J _� + (JT )�1h(�; _�): (2.5)

Since� is a function of� and _� it may be actively compensated for in the same manner asg andV above. If
the arm is constrained and_� is small, then� may be ignored [28, 19]. Either way, a linear,n DOF model in
Cartesian space is obtained.

This model is still more complex than necessary. Since� is not usually diagonal, the forces and accelera-
tions from different directions are coupled. However� can be diagonalized. In order to simplify the analysis
it will be assumed that the Cartesian end effector frame is aligned with the eigenvectors of�. Thus, each
DOF may be considered independently. Although a translational DOF is used for the following discussions,
the results are directly applicable to rotational DOFs as well.

2.2.1 Arm Composed of a Single Mass

The initial model chosen for analysis is a second order lumped parameter system which has discrete dynamic
attributes that include mass, damping, and stiffness. Figure 2.1 shows the arm represented as a mass,m,
acted upon by a force,f , and at a position,x. This simple system is represented by the equation:

m�x = f: (2.6)

which has the frequency domain transfer function:

X

F
=

1

ms2
: (2.7)

Figure 2.2 shows a block diagram for this system.

2.2.2 Arm With Damping

An initial modification to this model is performed by explicit inclusion of damping. As mentioned earlier,
damping may be naturally present in the arm, may be actively included, or both. Figure 2.3 shows a physical
model of the system. The equation of motion is:

m�x = f � (c+Kv) _x (2.8)

wherec is the natural damping andKv is the active damping. The transfer function for this system is:

X

F
=

1

ms2 + (c+Kv)s
: (2.9)

The block diagram for this system is shown in Figure 2.4. Since the experimental studies were with the CMU
DD Arm II which has practically no natural damping, only the active damping case (c = 0) will be considered
unless otherwise noted.
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2.2.3 Arm With Damping and Stiffness

Another modification to the above model is the inclusion of stiffness. Again, the arm may have stiffness
due to its mechanical structure or due to active stiffness control. Since the natural stiffness is due to the
flexibility of the materials that make up the arm it is typically much larger than the active stiffness. Also, if
the manipulator has at least six Cartesian DOF, there is no direction in which the stiffness is only composed
of mechanical stiffness. Thus, this natural stiffness is usually ignored. The next section will discuss a case in
which it is not. Note, this is the dynamic situation as viewed by the actuators and does not include nonlinear
phenomena such as stiction. For instance, if the gearing of a manipulator is not back-driveable, the arm may
be mechanically very stiff from the environment. Many actuators, including direct and harmonic drives, are
back-driveable however.

The active stiffness of a manipulator is usually provided by proportional control of the position. In this
case, the desired actuator force is given byf = Kp(x0�x), wherex0 is the commanded position, andKp is
position gain of the active controller and determines the stiffness of the system. Figure 2.5 shows a physical
model of the system. The equation of motion is:

m�x = Kp(x0 � x)�Kv _x (2.10)

the corresponding transfer function for this system is:

X

X0
=

Kp

ms2 +Kvs+Kp

: (2.11)

which is depicted in the block diagram shown in Figure 2.6.
It is worth noting that the above does not necessarily have to be represented as a position controlled

system. Iff = Kpx0 is considered to be the desired actuator force, then the equation of motion is:

m�x = f �Kpx�Kv _x (2.12)

A clear physical diagram of this is not really possible. However, using the transfer function for this system,

X

F
=

1

ms2 +Kvs+Kp

: (2.13)
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it can be shown that the controller block diagram becomes Figure 2.7. This representation will be useful
later.

2.3 Including Higher Order Arm Dynamics

Representing the arm as a second order system prevents the modeling of any higher order modes of vibration.
It has been recognized by some researchers that the arm has higher order dynamics that may need to be
modeled [13, 14, 53, 74]. Figure 2.8 shows a two mass, fourth order model of a robot arm. The extra
dynamics provided byk2 andc2 exist within the actuators or the arm linkage. When included in the following
discussions, it is assumed that these dynamics are from the linkage, since the CMU DD Arm II has no actuator
dynamics. Therefore, the dynamics represent the manipulator beyond the actuator.

For the position controlled arm with rigid links that is not interacting with the environment, this case is
meaningless for two reasons. First the stiff links will not have their dynamics excited by the manipulator
motion in free space. Second, the actuation forces are usually based on the position of a degree of freedom
read at the actuator location. For example, joint resolvers are mounted on the motor axis. The actual location
of the end effector is never known, but assumed to be correctly calculated by the forward kinematics. If the
links are flexed, the joint positions may erroneously indicate that the arm’s end effector is positioned correctly.
Thus, the actuation forces in the block model depend on the position of massm1; the varying position ofm2

does not effect the controller (except by the disturbance of the reaction forces transmitted throughk2 andc2).
The link flexibilities may become important if the arm is force controlled and if the force measurements

are made at the endpoint of the arm. This issue will be further discussed below after the environment and
force sensor models have been introduced. Until then, the second order arm model will be used.

2.4 Arm Plus Environment Model

Now that a model of the manipulator has been introduced, it is necessary to discuss an environmental model.
Some researchers have made no assumptions about the structure of the environment, and have assumed
instead that interaction with it will produce measurable forces [54, 24, 22, 28, 18, 43]. Other researchers,
usually those working with a compliant system or sensor, have modelled the environment as a mechanical
ground [56, 71]. Still others have recognized that the environment has some compliance, and therefore have
modelled it as a simple stiffness [69, 70, 50, 31, 51, 12, 26, 36, 73, 25, 11]. Finally, other researchers have
modeled the environment as a complete second order system with components of mass and damping, as well
as stiffness [13, 14, 28, 74]. This last form of the environmental model recognizes that the environment has
oscillatory modes of its own, but simplifies the overall analysis by only considering the first mode. Thus, the
second order model is more restrictive than just a general environment that exerts measurable force on the
arm. However, the specific representation of its dynamic components will permit a better understanding of
the interaction between the arm and the environment.

Using a second order model, it is valuable to explicitly describe the interaction of the environment with the
arm model. Figure 2.9 shows the coupled system, whereme, ce, andke represent the modeled environmental
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mass, damping, and stiffness, andfR is the reaction force exerted by the environment on the arm. The
undisturbed position of the environment,x0, is assumed to be zero without any loss of generality. The
disturbed position is the same as the arm position,x.

Notice that the arm mass and environmental mass are directly in contact. However, for this system to
provide force controlled interaction there must be a force sensor. Initially, it will be assumed that a ‘magic’
force sensor exists between the masses. The measured force is then equivalent to the reaction force:fm = fR.
Also, the manipulator position is equal to the environmental position:x = xr = xe. All this implies is that the
sensor dynamics are not being modelled, which is reasonable if the arm and environment stiffnesses are much
less than that of the sensor. Since the force sensor used consists of strain gauges mounted on aluminum, it
has a very high stiffness, satisfying the assumption. In the next section the model will be expanded to include
sensor dynamics; until then it is useful to proceed with the development without them.

The model of the arm and environment can be described by the following set of equations:

mr�x = f � fR �Kv _x (2.14)

me�x = fR � kex� ce _x (2.15)

or

(mr +me)�x+ (Kv + ce) _x+ kex = f (2.16)

me�x+ ce _x+ kex = fR: (2.17)

These equations illustrate the concepts of impedance and admittance presented by Hogan [22]. In that frame-
work it can be seen that the first equation shows how the actuation forcef exerted on the system yields a
positionx. And complementary to this, the second equations shows that the position constraint,x, impressed
on the environment, yields a reaction force,fR. Viewed in this way, it can be seen that the block diagram in
Figure 2.10 represents the system in Figure 2.9. From the block diagram, the transfer function of the system
is:

Fr
F

=
Fm
F

=
mes

2 + ces+ ke
(mr +me)s2 + (Kv + ce)s+ ke

: (2.18)
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Figure 2.11: System of Figure 2.9 modified to include sensor dynamics.

2.5 Arm, Environment, and Sensor Model

While a very stiff force sensor may not always exhibit its dynamics, under certain circumstances they may
become important. The use of a stiff robot position controller, contact with a stiff environment, or impact
with the environment may excite the sensor dynamics. Therefore, it is sometimes necessary to include the
sensor in the model. A second order model of the sensor dynamics can be included in the previous model by
placing a spring and damper between the robot mass and environment mass, as shown in Figure 2.11. Any
mass that the sensor may have is included in either the arm or environment mass. The sensor stiffness isks,
and its damping iscs. Also xr andxe are the robot and environment positions (that is, the positions of their
mass components). The reaction force experienced by the arm is labeledfR. The negative of this force,�fR,
is experienced by the environment, since the sensor spring and damper are ideal components and transmit
forces applied to them.

This modified system may be described by the following equations:

mr�xr = f �Kv _xr � ks(xr � xe)� cs( _xr � _xe) (2.19)

me�xe = �ks(xe � xr)� cs( _xe � _xr)� kexe � ce _xe: (2.20)

These can be rewritten in terms of the reaction force as:

mr�xr +Kv _xr = f � fR (2.21)

me�xe + ce _xe + kexe = fR (2.22)

and
fR = ks(xr � xe) + cs( _xr � _xe) (2.23)

The Laplace transforms of the above equations yields three useful intermediate transfer functions for the arm
(A), environment (E), and sensor (S).

A =
Xr

F � FR
=

1

mrs2 +Kvs
(2.24)

E =
Xe

FR
=

1

mes2 + ces+ ke
(2.25)

S =
FR

Xr �Xe

= css+ ks (2.26)

Thus the block diagram of the system can be constructed as shown in Figure 2.12. The transfer function for
the sensor and environment (G), relatingXr toFR, is given by:

G =
FR
Xr

=
S

1 + SE
=

(mes
2 + ces+ ke)(css+ ks)

mes2 + (cs + ce)s+ (ks + ke)
(2.27)
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Figure 2.12: Block diagram of system in Figure 2.11.
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Figure 2.13: Revision of block diagram in Figure 2.12 to show commanded force.

The dynamics of the sensor can be removed ifks !1 andke ! 0. Then the above equation reduces to:

G = mes
2 + ces+ ke (2.28)

which is the same as the environmental transfer function alone, as shown in Figure 2.10.
Further, the entire transfer function, relatingF toFR, may be obtained as:

FR
F

=
AG

1 +AG
=

AS

1 + AS +ES
(2.29)

=
(mes

2 + ces+ ke)(css+ ks)

(mes2 + (cs + ce)s+ (ks + ke))(mrs2 + crs) + (mes2 + ces+ ke)(css+ ks)
(2.30)

Again, the dynamics of the sensor can be removed ifks !1 andke ! 0. The transfer function then reduces
Equation (2.18), which is just the transfer function of the system without the sensor, as expected.

Equation (2.30) is not, however, the transfer function which can be used for control purposes. This is
because the force sensor does not measure the reaction force,fR, but instead measures the deformation of
the sensor spring,xr�xe. This measurement is multiplied by the spring constant,ks, to obtain the measured
force value,fm. The revised block diagram is shown in Figure 2.13. The revised transfer function is:

Fm
F

=
Aks

1 +AS +ES
=

(mes
2 + ces+ ke)ks

(mes2 + (cs + ce)s+ (ks + ke))(mrs2 + crs) + (mes2 + ces+ ke)(css+ ks)
(2.31)

which has the same characteristic equation as before, while the numerator has only been changed by the
omission of the sensor damping. Equation (2.31) agrees with the result derived in reference [13].

Thus, a model of the coupled arm, environment, and sensor system has been established. Although this
model ignores arm dynamics, a modified interpretation of the model components can address the discrepancy.
This will be discussed in the next section.

2.6 Arm with Dynamics, Environment, and Sensor Model

Following the discussion from the previous three sections, it seems necessary to include the dynamics of the
arm and force sensor. Including both would require a sixth order model as shown in Figure 2.14. However,
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Figure 2.14: Physical model of sixth order system.
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Figure 2.15: General fourth order model of arm, sensor, and environment system.

this is unnecessarily complex, and the order of the model can be reduced. As was described in Section 2.3, the
dynamics attributed to the arm are beyond the actuator. These dynamics are due to vibration of the physical
structure of the manipulator. For the case of the CMU DD Arm II , this structure is made of aluminum. As
was described in Section 2.4 the force sensor is also made of aluminum. Neither of these physical structures
has the discrete dynamic components that have been used to represent them. Instead, they are distributed
systems whose modes of dynamic excitation have been represented by a discrete system approximation.
Since the arm structure and force sensor are of similar construction and connected physically, they should
be treated as a single unit. And since only lowest order modes of excitation have been of concern, the arm
structure and force sensor can be represented as a single second order system. Thus, the previous model can
be reduced, and represented by the general model in Figure 2.15. Similarly, the previous transfer function,
Equation (2.31) can be rewritten as:

Fm
F

=
(mBs

2 + c3s+ k3)k2
(mBs2 + (c2 + c3)s+ (k2 + k3))(mAs2 + c1s) + (mBs2 + c3s+ k3)(c2s+ k2)

(2.32)

While this model appears to be the same as in Figure 2.11, it represents slightly different components of the
physical system.

Similar to the earlier model, the parametersk3 andc3 represent the stiffness and damping of the environ-
ment. Also, the parametersk1 andc1 are the stiffness and damping of the arm. As discussed previously, it is
usually assumed thatk1 = 0, but it is useful in the following analysis to keep this parameter in the equations
for symmetry purposes.

Unlike before, the parametermA represents mass of the actuator, arm,andsensor, while the parameter
mB represents mass of the environment, sensor,andarm. As described above, this overlap is due to the fact
that the arm beyond the actuator and the sensor are lumped together in a first order model. Part of their total
mass must be on either side of the spring and damper which causes any oscillation. This spring and damper
are represented byk2 andc2. These parameters are equal to the serial addition of the stiffness and damping
from the outer arm and sensor:

k2 =
1

1
ks

+ 1
kouterarm

c2 =
1

1
cs

+ 1
couterarm

(2.33)
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Considering that the outer arm is made of the same material as the sensor but is longer in length, its stiffness
is just a fraction of the sensor stiffness. This is true for the damping as well. Thus,

ks =
kouterarm

�
cs =

couterarm
�

(2.34)

and, therefore,
ks = (1 + �)k2 cs = (1 + �)c2 (2.35)

where� is the nonnegative proportionality factor and is linearly related to the relative lengths of the outer arm
and the force sensor (assuming constant cross sectional area). Considering the relative lengths of the CMU
DD Arm II linkage and the Lord force sensor, it is expected that� will be on the order of ten for this system.

Thus, a fourth order model has been developed for the arm, sensor, and environment system which con-
siders only first order vibrations in each of these components. Further analysis of these vibrations is presented
in the following sections.

2.7 Analysis of the Fourth Order Model

Given the model previously developed, it is necessary and important to explore its validity. To do this, a
vibrational analysis will be performed and the effects of hysteresis will be discussed. Subsequently, the
analytic results will be compared with experimental results.

2.7.1 Vibrational Analysis Without Damping

In this section a vibrational analysis of the model shown in Figure 2.15 will be performed. Similar analysis
can be found in many standard physics textbooks [58]. However, the analysis here deals with the asymmetric
case and an approximate result will be derived for the case of underdamped vibration.

First, the kinetic and potential energy of the system are:

T =
1

2
mA _x2A +

1

2
mB _x2B (2.36)

V =
1

2
k1x

2
A +

1

2
k2(xB � xA)

2 ++
1

2
k2x

2
B : (2.37)

Lagrange’s formulation may be used to obtain the equations of motion:

d

dt

�
@L

@ _xi

�
�

@L

@xi
= Qi (2.38)

whereL = T � V andQi are the generalized forces. Direct application yields:

mA�xA + k1xA � k2(xB � xA) = �c1 _xA � c2( _xA � _xB) + f (2.39)

mB �xB + k1xB + k2(xB � xA) = �c3 _xA � c2( _xB � _xA) (2.40)

The general solutions
xA = AAe

pt xB = ABe
pt (2.41)

are used, wherep is a complex number andAA andAB are constants. Thus, the equations may be written as:2
4 mAp

2 + cAp+ kA �(c2p+ k2)

�(c2p+ k2) mBp
2 + cBp+ kB

3
5
2
4 xA

xB

3
5 = 0 (2.42)
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where

kA = k1 + k2 (2.43)

kB = k2 + k3 (2.44)

cA = c1 + c2 (2.45)

cB = c2 + c3: (2.46)

The modes of vibration can be obtained by ignoring the damping forces (i.e. letf = c1 = c2 = c3 = 0).
Thus, the equations reduce to the eigenvalue formulation:2

4 kA
mA

+ p2 �k2
mA

�k2
mB

kB
mB

+ p2

3
5
2
4 xA

xB

3
5 = 0 (2.47)

The determinant of the matrix yields the characteristic equation of the system:

p2 + p

�
kA
mA

+
kB
mB

�
+
kAkB � k22
mAmB

= 0; (2.48)

which has the solution:

p2 = �
mBkA +mAkB

2mAmB

"
1�

s
1�

4mAmB (kAkB � k22)

(mBkA +mAkB)
2

#
: (2.49)

If the argument of the square root is less than one and greater than zero,p is purely imaginary. From Equa-
tions (2.43) and (2.44) it is apparent that the termkAkB � k22 is positive. Therefore, its worst case value is
kAkB � k22 ! kAkB . In this case the argument of the radical becomes:

1�
4mAmB (kAkB)

(mBkA +mAkB)
2 =

(mBkA �mAkB)
2

(mBkA +mAkB)
2 < 1 (2.50)

Thusp is a purely imaginary number,i!, where! is the natural frequency of the coupled system and an
eigenvalue of the equations. For the case of no robot actuator stiffness (k1 = 0), this reduces to:

!2 =
mBk2 +mA(k2 + k3)

2mAmB

"
1�

s
1�

4k2k3mAmB

(mBk2 +mA(k2 + k3))
2

#
: (2.51)

It is useful to consider the situation whenk2 � k3 (relatively soft environment) whilek1 remains zero. For
these conditions the above equation reduces to:

!2 �
k2(mA +mB)

2mAmB

�
1�

�
1�

2k3mAmB

k2(mA +mB)2

��
(2.52)

(using the binomial expansion,(1 + x)n � (1 + nx), for smallx). The two eigenfrequencies are thus:

!1 �

r
k3

mA +mB

and !2 �

s
k2

�
1

mA

+
1

mB

�
: (2.53)

These results make intuitive sense. The lower frequency!1 corresponds to the case ofma andmb acting as
a rigid body oscillating onk3 at!1. Similarly, the higher frequency!2 corresponds to the case ofmA and
mB oscillating out of phase on springk2, neglecting any effect ofk3.
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Using the above eigenvalues, the eigenvectors of the system may be obtained. Equation (2.47) provides a
relation between the components of the vectors:

xA =
(k2 + k3)�mB!

2

k2
xB : (2.54)

Again considering the case ofk2 � k3, andk1 = 0, the eigenvectors are obtained:

v1 =

2
4 1 + �

1

3
5 v2 =

2
4 �mB=mA

1

3
5 (2.55)

where� is a small positive value. These vectors correspond directly to the oscillatory modes described above.
Note, these vectors are not orthogonal, which is to be expected since the matrix in Equation (2.47) is not
symmetric.

2.7.2 Vibrational Analysis With Damping

Having solved for these oscillatory modes, it is useful to look at the case with damping. In this case, the
characteristic equation may be obtained from Equation (2.42) as:

p4mAmB + p3(mBcA +mAcB) + p2(mBkA +mAkB + cAcB � c22)

+ p(cBkA + cAkB � 2c2k2) + (kAkB � k22) = 0 (2.56)

In general this will yield two complex solutions and their conjugates.
For the underdamped case, these poles will be close to the undamped poles, but moved slightly to the left

of the imaginary axis. For example, consider the low frequency poles. As described in the previous section
these poles represent an approximately second order system of mass equal tomA +mB oscillating on the
springk3. The addition of damping,c1 + c3, to this system moves the poles to the points

p =
c1 + c3

2(mA +mB)
�

s
(c1 + c3)2

4(mA +mB)2
�

k3
(mA +mB)

(2.57)

or
p � � � i!1 (2.58)

where the decay parameter� is:

� =
c1 + c3

2(mA +mB)
(2.59)

and!1 is given in Equation (2.53). This estimation will prove useful later in this chapter when analyzing data
of the oscillations of the real system.

The fourth order characteristic equation above may be solved exactly for its four poles. These values can
then be used in one of the following relations, which are obtained from Equation (2.42):

xB =
mAp

2 + cAp+ kA
c2p+ k2

xA (2.60)

xB =
c2p+ k2

mBp2 + cBp+ kB
xA (2.61)

Since the characteristic equation is effectively obtained by setting these two relations equal, the value ofp
obtained from it must yield the ratio ofxB=xA. However, this ratio has an extremely messy exact solution.
The exact solutions forp are very complicated to begin with, and then they must be substituted in one of the
equations above. Little insight into the significance of the parameter values would be obtained from such a
brute force solution. Instead the following assumptions are made:
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1. p! �i! The system is underdamped and the eigenvalues of the
undamped system will be used.

2. k2 � c2!, k3 � c3! The system is underdamped.

3. k2 � k3 The arm linkage and force sensor are much stiffer than
the environment.

4. k1 = 0 There is no position gain in the control law, and there
are no actuator dynamics. Open loop force control is
used.

5. !2 = � k3
mA+mB

Only the low frequency oscillations will be considered.

As was stated earlier, Equations (2.60) and (2.61) must be identical. However, lettingp � �i! will
remove from the first equation any dependence on the parameterc3. Similarly, the second equation will not
depend onc1. (Terms that do not have dependence onc1 or c3 will remain the same.) Thus, using either
equation exclusively removes information. One way around this problem is to use a solution that includes the
union of terms from the two solutions based on the approximation ofp � �i! �

p
k3=(mA +mB).

Another obstacle to a meaningful approximate solution is the fact that it is not possible to directly measure
the value ofxb (at least with our experimental system). Instead, the force sensor may be used to obtain the
difference betweenxA andxB :

fm = ks�xs = k2(1 + �)�xs = k2(xB � xA): (2.62)

It will prove useful in this development to introduce a relation between the masses,mA andmB . The
sum of these masses may be written as the multiple of either:

mA +mB = �mA and mA +mB = �mB (2.63)

or

mB = (� � 1)mA and mB =
1

� � 1
mA (2.64)

and therefore

� =
�

� � 1
and � =

�

�� 1
: (2.65)

Using these relations and the approximation forp yields:

mAp
2 = �

k3
�

and mBp
2 = �

k3
�

(2.66)

Thus, both Equations (2.60) and (2.61) can be used in Equation (2.62) and the union of the terms from
the two results can be taken. Equation (2.60) yields:

f (1)m = k2(xB � xA) (2.67)

= k2

�
mAp

2 + cAp+ kA
c2p+ k2

� 1

�
xA

= k2

�
mAp

2 + c1p+ k1
c2p+ k2

�
xA

= k2

" 
�k3

�
+ c1p+ k1

c2p+ k2

!�
c2p

� + k2
c2p� + k2

�#
xA
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= k2

"
c1c2jpj

2 + k2
�
k1 �

k3
�

�
+ c1k2p+ c2

�
k1 �

k3
�

�
p�

c22jpj
2 + c2k2(p+ p�) + k22

#
xA

�
1

k2

�
c1c2jpj

2 + k2

�
k1 �

k3
�

�
+ p

�
c1k2 � c2

�
k1 �

k3
�

���
xA

�

�
k3c1c2
k2�mA

+

�
k1 �

k3
�

��
xA +

�
c1 +

c2
k2

�
k3
�
� k1

��
_xA (2.68)

Similarly, Equation (2.61) yields:

f (2)m �

�
�
k3c2c3
k2�mA

�
k3c

2
3

k2�mA

�
k3
�
�

k23
k2�2

�
xA +

�
k3c2
k2�

� c3

�
_xA (2.69)

Comparing Equations (2.68) and (2.69) it is seen that those terms which do not containc1 or c3 appear in
both expressions. In particular,c3 terms do not appear in the first result, andc1 terms do not appear in the
second result. This is just as expected. To gain a good first order approximation of the equation forfm it is
necessary to include all terms that appear at least once in both results. This gives:

fm �

�
k3

k2�mA

�
c2 (c1 � c3)� c23

�
�
k3
�

�
1 +

k3
k2�

�
+ k1

�
xA+

�
c1 � c3 +

c2
k2

�
k3
�
� k1

��
_xA (2.70)

Using the assumptions thatk2 � k3 andk1 = 0, this reduces to:

fm � �
k3
�
xA +

�
c1 � c3 + c2

k3
k2�

�
_xA (2.71)

(For the case ofc3 > c1, this is a lower bound on the magnitude of thexA term, and a first approximation.
As can be seen in Equation (2.70), it will actually be more negative.) The above equation may be written as:

fm = �K 0xA � C 0 _xA (2.72)

whereK 0 andC 0 are the effective stiffness and damping measured by the sensor.
The relationship offm to xA seems reasonable — the measured force is equal to the value of�k3xa,

modified only be the parameter�.
However, the value ofC 0 seems strange at first glance. Obviously, the introduction of damping to the

system can make the measured force proportional to the velocity,_xa. However, it can be seen that this
term can take on negative and positive values. For positive values, it appears at first that the system is not
conservative. But a very simple and intuitive explanation can be provided to show that the system remains a
conservative one.

When the system is oscillating at the low eigenfrequency the masses are moving symmetrically, withmA

having a larger amplitude thanmB . AsmA moves toward the environment,k2 is compressed and a force is
measured. However, the dampersc1 andc2 resist the motion ofmA. Thus, they both diminish the magnitude
of the measured force.

In summary, the introduction of damping to the oscillatory system has caused a change of phase of the
oscillations. This phase change shows up as a velocity term in the approximation for the measured force. In
the next section the effects of this phase change on the system will detailed.

2.7.3 Hysteresis

When damping is added to an oscillating system, energy is lost during the cycle of motion. If the oscillation
is maintained by a driving force, then the energy lost due to damping is replaced every cycle. However, the
addition and subtraction of energy are not in phase. If they were, the damping would be instantaneously
negated, and the system would oscillate as if it were undamped.
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analyzed. Equation (2.72) shows that this may be thought
of as a second order system with an arbitrary mass, and spring and dampersC 0 andK 0. In this reduced
model, the measured forcefm is equivalent to the sum of the forces experience by the mass:

f = m�x = �K 0x� C 0 _x (2.73)

(For convenience, the subscripts have been dropped.) For such a system, the quasi-static motion ofx would
yield a straight line of slope�K 0 and amplitudeA, as shown in Figure 2.16. (Note, this figure contains an
offset f0 = �K 0x0 which may be added to both sides of the above equation.) For the dynamic situation in
which the damped system is driven so that there is no loss in amplitude, the force is described by Figure 2.17.
This makes intuitive sense. The value off is no longer dependent on justx, but also on the direction of
motion. Motion in the positive direction causes the measured force to be reduced by a negative damping
force. Motion in the negative direction causes the measured force to be increased by a positive damping
force. This phenomenon of the separation of the paths traveled is calledhysteresis, and the connected curve
is called ahysteresis loop.

A pertinent questions is: What is the geometric shape of the hysteresis loop? A steady state oscillation
can be described by [59]:

x = A sin(!t+ �) (2.74)

_x = A! cos(!t+ �) (2.75)

Thus, the damping force can be obtained:

FD = �C 0 _x = �C 0A! cos(!t+ �) = �C 0A!

q
1� sin2(!t+ �) = �C 0A!

r
1�

� x
A

�
(2.76)

or �
FD
C 0A!

�2

+
� x
A

�2
= 1 (2.77)
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direction of travel about this hysteresis curve it is noted that
when moving from the negativex direction, the damping force,�C 0 _x, must be positive forC 0 > 0. Thus,
for C 0 > 0, the hysteresis loop is counterclockwise. ForC 0 < 0, the hysteresis loop is clockwise.

However, this is just the description of the damping force. To get the value of the measured force, the
spring force must be added as in Equation (2.73). This is the equivalent of adding a line to an ellipse. The
addition of a line to an ellipse mathematically yields a rotated ellipse, but the semi-major axis is not parallel
to the line. Since the slope of the line added is important, it is useful to think of the new contour as askew
ellipse. Thus, the addition of the spring force to the damping force yields the measured force as a skew ellipse
with an axis at slope�K 0, as shown in Figure 2.17.

A similar analysis may be performed for the hysteresis curve off( _x). In this case it is the positional force
which causes a separation of the paths. Therefore, it is necessary to look at the positional force,FP :

FP = �K 0x = �K 0A sin(!t+ �) = �K 0A
p
1� cos2(!t+ �) = �K 0A

s
1�

�
_x

A!

�
(2.78)

or �
FP
K 0A

�2

+

�
_x

A!

�2

= 1 (2.79)

which, again, is the equation of an ellipse. The direction of travel about this hysteresis loop may be obtained
by considering the situation at the extremes of oscillation when the velocity is zero. When switching from
a positive to negative velocity, the force must be in the negative direction. Thus the direction of travel is
clockwise forK 0 > 0.

Again, it is necessary to add an offset to obtain the measured force. From Equation (2.73) it is seen that
the damping force must be added. This again yields askewellipse with an axis at slope�C 0, as shown in
Figure 2.18.

Finally, if the system is not driven to maintain a constant amplitude the oscillations will decay. This
causes the continuous elliptical curves to change to elliptical spirals that converge on zero.
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k2 andk3:
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k2k3

k2 + k3
(2.80)

According to Approximation 3 of Section 2.7.2, the measured spring constant can be reduced tok3 � 104

N/m.
(Note: In this and all subsequent data presented, the parameterfm may be represented by MezForcwd[2],

thez component of the measured force in the world frame. Similarly, the parameterxA may be represented
by MezP[2], thez component of the measured position in world frame.)

Another test was performed to measure the stiffness of the force sensor. To do this, the sensor was
removed from the arm and compressed in a C-clamp. Compression of the sensor was measured with a
micrometer, and the forces were measured by the sensor itself. The data is shown in Figure 2.21. The
measured spring constant,ks was about5� 106 N/m.

Given this initial data, and the model development of the previous sections, it is possible to analyze
the response of the entire system to small oscillations. To obtain the data, the arm was placed against the
environment as shown in Figure 2.19. The arm was given an open-loop command to exert 20N of force
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arm
force sensor
probe and weight
aluminum plate
cardboard box
table

Figure 2.19: Experimental setup for force oscillation experiments.

against the surface. (Incidentally, the measured open-loop force of 18.6N indicates the need for closed-
loop force control.) Then the environmental surface was struck softly so as to excite only low frequency
oscillations. The measured force, position and velocity of one of these tests is shown as a function of time
in Figure 2.22. While damping is present, the system is obviously underdamped, which matches the earlier
assumptions.

First, the frequency of oscillation is about 90 radians/second. Equation (2.53) and Assumption 5 in
Section 2.7.2 then indicatemA +mB = 1:2 kg.

Second, the environmental damping parameterc3 may be obtained using Equation (2.59) and (2.41).
Figure 2.23 is a plot of the natural logarithm of the absolute value of the peak oscillations of the measured
force. The slope of the line in this graph gives the value of the decay parameter�. This slope is -11.3. Thus,
c3 = �2(mA +mB)� � c1 = 17 N � s=m.

The above time response of force, position, and velocity, may also be graphed so as to show the hysteresis
curves of the response. Figure 2.24 shows the measured force as a function of displacement. The slope of the
elliptical spiral yieldsK 0 � 104 N/m. Figure 2.25 shows the measured force as a function of velocity. The
slope of this elliptical spiral indicates thatC 0 � 66 N � s=m. Figure 2.26 shows that these are valid values
of K 0 andC 0 by comparing the measured force with the force calculated from Equation (2.72). Using these
values ofK 0 andC 0 in a comparison of Equations (2.72) and (2.71) should provide estimates of all unknown
dynamic parameters in the fourth order model.

First, it is known thatK 0 � k3=�. Since bothK 0 andk3 are approximately104 N/m,� � 1. However,
Equation (2.64) shows that� cannot be exactly unity ormB is zero. Therefore, it is assumed that the data
indicates thatmA � mB . It will be assumed that� � 1:1, or equivalently,mB is less thanmA by an
order of magnitude:mB = 0:1mA. Therefore, from the previous result using the frequency of oscillation,
mA � 1:1 kg andmB � 0:1 kg.

Second, it is known that from Equations (2.72) and (2.71) that

c2 �
k2�

k3
(C 0 � c1 + c3) (2.81)

All that is unknown is the ratio ofk2=k3. However, from Equation (2.35) it is known thatk2 will be less than
ks. As stated then, the geometric comparison of the lengths of the force sensor and the outer arm indicated
thatk2 will be about an order of magnitude less than the force sensor stiffness of5�104 N/m. It is also known
from Assumption 3 in Section 2.7.2 thatk2 � k3, and therefore is at least an order of magnitude larger than
the environmental stiffness of104 N/m. Thus,105N=m < k2 � 5� 105N=m. Lettingk2 � 5� 104, implies
that(1 + �) = 10, and the above equation yieldsc2 � 4400.

In review, the following parameters values were obtained using the described means and assumptions:
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Figure 2.20: Force versus position data for arm pushing quasi-statically on environment. The slope indicates
ke � 9340 N/m.
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Figure 2.21: Force versus position data for static compression of force sensor with a clamp. The slope
indicatesks = 5� 106 N/m.
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Figure 2.22: The measured time response of force, position, and velocity after the system has been excited.
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environment.
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Figure 2.24: The measured hysteresis curve of force versus position.
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Figure 2.25: The measured hysteresis curve of force versus velocity.
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k1 = 0 N/m Direct Drive motors have no intrinsic stiffness, and
none was provided actively.

k3 � 104 N/m Quasi-static measurement of force versus displacement
assumingk2 � k3.

mA +mB = 1:2 kg Measurement of oscillating frequency, assuming low
frequency underdamped vibration.

c3 = 17 N � s=m Measured directly or from decay envelope.

K 0 � 104 Measurement of force versus position hysteresis loop
skew.

C 0 � 66 Measurement of force versus velocity hysteresis loop
skew.

mA = 1:1 kg,mB = 0:1 kg K 0 � k3 indicates� ! 1. It is assumed that� � 1:1
ormA=mB � 10.

ks = 5� 106 N/m Direct measurement.

� � 10 Geometric estimation.

k2 � 5� 105 N/m Condition thatk3 � k2 = ks=(1 + �).

c1 = 10 N � s=m Controlled damping.

c2 = 4235 N � s=m From calculation based on small damping approxima-
tion.

2.7.5 Simulation

To test the parametric values obtained experimentally in the previous section a simulation of the system was
performed. Figure 2.27 shows the time response of the measured force, position, and velocity. This compares
favorably with the real data in Figure 2.22. The frequency of the simulation is84 radians/second, compared
with 90 radians/second for the data.

The simulated force versus velocity hysteresis loop is shown in Figure 2.28. This is compared to the real
data in Figure 2.25. The slope of64 N � s=m is very close to the data value of66 N � s=m. Notice too, that
this graph exhibits a negative skew axis, further justifying the earlier explanation of this phenomenon.

The simulated force versus position hysteresis loop is shown in Figure 2.29. This is compared to the real
data in Figure 2.24. Although the slope of the skew axis is smaller in the simulation by about 30%, this can
be attributed to the model inaccuracies and experimental error. Since the main concern has been with the
order of magnitudes of the spring constants, this is a reasonably good result.

The slope of the force versus position curve is determined mainly by the value ofk3. To improve its
slope,k3 can be increased by 30% to13000 N/m. Changingk3 alters other parameters also. The following
parameter list results:

ma = 1:46 kg

mb = 0:14 kg

k1 = 0

k2 = 5� 105 N=m

k3 = 13000 N=m
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Figure 2.26: The addition of the measured position and velocity, multiplied by the determined constants,
yields a close match to the measured force.
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Figure 2.27: Simulated time response of position, velocity, and force, using the estimated parameter values.
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Figure 2.28: Simulation result of force versus velocity using estimated parameters.
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Figure 2.29: Simulation result of force versus position using estimated parameters.
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c1 = 10 N � s=m

c2 = 3651 N � s=m

c3 = 26:3 N � s=m

The results of using these parameters within the simulation are shown in Figures 2.30 through 2.32. As can
be seen, only the force versus position curve changes significantly, increasing its slope to9333 N/m, which
agrees very closely with the data. This result is consistent with Equation (2.70), the comments following
Equation (2.71), and the parameter estimates of the last section. Unless otherwise indicated, these parameter
values will be used for all subsequent illustrative examples.

2.8 The Resultant Model

The purpose of this analysis has been to obtain reasonable estimates of the system parameters. These values
will be useful to provide a plant model when discussing force control strategies. For these purposes, even
order of magnitude approximations will prove to be acceptable. Discrepancies between quantities like the
value ofk3 in the data and simulations are therefore viewed as unimportant. In fact, the correspondence
between experimentation and simulation indicated that the developed fourth order model is accurate and
useful.

This fourth order model will be used as the plant in the analysis of force control strategies in the subse-
quent chapters. However, for those discussions it will be more useful to use the pole/zero representation of
the plant. For completeness, this representation is introduced here. The locations of poles and zeros for this
plant are shown in Figure 2.33 and all but the left most pole is shown in more detail in Figure 2.34. The
complex pole/zero pairs are due mainly to the environment. The other pole pair is due mainly to the sensor
dynamics. These pole pairs will therefore be called the environment and sensor poles, respectively, in future
discussions. It can be seen that the sensor poles are fairly far removed from the environmental ones, and are
located farther into the left half plane. Usually, the leftmost sensor pole will be ignored.

Finally, it is important to note that the derived model parameters make the fourth order system extremely
different than that presented in reference [13]. In that discussion, based on theoretical analysis only, it was
assumed that the pole zero pairs were to the left of two complex conjugate poles. As has been shown from
experimental data, this is not the case for a very common environment. As will be shown in the following
chapters, this difference in the arm / sensor / environment model results in extremely different conclusions
about the stability properties of the various force control schemes analyzed and implemented.

2.9 Conclusion

In this chapter, a fourth order model of the arm, sensor, environment system has been developed. The devel-
opment included the consideration of each of the components of the model as second order systems capable
of representing the lowest order oscillations of that component. While the outer arm dynamics were briefly
included in the development, it was shown that they could be merged with the sensor dynamics to yield a
fourth order model of the entire system. Analysis of this model without damping was used to derive an ap-
proximate solution for the damped case. Many assumptions, based on the reality of the experimental system,
helped reduce the solution to just a few dominant terms. Comparing these terms with experimental data of
the system undergoing small oscillations yielded approximated values for all of the parameters in the model.
To justify the obtained values, and thereby the approximations used, a simulation of the fourth order model
was performed. The results compare favorably with the experimental data.

Having developed this fourth order model, and demonstrated its viability, it is again necessary to consider
the control question. A discussion of explicit force control and impedance control of this plant will begin in
the next chapter.
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Figure 2.30: Simulated time response of position, velocity, and force using modified parameter values.
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Figure 2.31: Simulation result of force versus velocity using the modified parameters.
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Figure 2.32: Simulation result of force versus position using modified parameters.
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Figure 2.33: The poles and zeros of the fourth order system.
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Figure 2.34: An enlargement of Figure 2.33 showing all but the leftmost pole of the original plot.



Chapter 3

Discussion and Analysis of Explicit
Force Control Schemes

3.1 Introduction

Having developed the model of the arm / sensor / environment, it becomes the plant for a force controller
which must be designed to stably maintain forces inside this system. As discussed earlier, two main ap-
proaches have been proposed for this purpose:explicit force controlandimpedance control. However, it has
also been pointed out conceptually in Chapter 1 that every impedance controller contains an explicit force
controller. Therefore, this chapter will discuss explicit force control. Using the plant model developed, each
of the specific controllers discussed will be analyzed for stability. Where possible, this analysis will be com-
pared with the reported results of other researchers. Later, Chapter 6 will present an experimental analysis as
well.

As discussed in Chapter 1, explicit force control involves the direct command and measurement of force
values. The goal of this type of control is to have the output follow the input as closely as possible. Two
types of explicit force control have been proposed: force-based, and inner position loop based. By far the
most commonly discussed, the force-based techniques usually involve the use of some form of PID control,
as well as various simple forms of filtering. Inner position loop controllers, as the name suggests, have an
outer force control loop that provides position command to an inner position-based controller.

While many of these controllers have been analyzed before, this has not been done with an experimentally
determined plant transfer function. As will be seen, erroneous conclusions about the stability of the system
can result without a specific system model. Further, the analysis in this chapter draws the force and position-
based strategies together, into one coherent framework, for the first time. This framework provides greater
understanding of how gain variations affect stability, and suggests a new lowpass filter control technique.

The chapter is organized as follows. First, force-based explicit force control techniques will be presented
and analyzed. Second, position-based explicit force control strategies will similarly be presented and ana-
lyzed. Finally, it will be shown how the two are the same, indicating which particular schemes will be most
successful.

3.2 Force-Based Explicit Force Control

Force based explicit force control describes a force controller that compares the reference and measured force
signals, processes them, and provides an actuation signal directly to the plant. The reference force may also
be fedforward and added to the signal going to the plant.

Some previous researchers have also employed an active damping signal which effectively changes the
plant, by introducing a nonzeroc1 into the plant transfer function, as seen in Equation (2.32). This damping

32
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Figure 3.1: Block diagram of a generic force-based, explicit force controller.

term moves the environmental poles closer to the real axis but does not generally change the plant structure.
This is because the environment is generally very stiff, and active damping is usually not large enough to move
these poles to the real axis and make the system nonoscillatory. To be consistent with the model presented in
Chapter 2, active damping withKv = 10 will be used unless otherwise indicated.

Therefore, the general control diagram is shown in Figure 3.1, whereG is the plant,H is the controller,
andR is the feedforward transfer function, andL is a force feedback filter. The plantG may be represented
by the fourth order model of Equation (2.32) or the reduced second order model given by Equation (2.18).
Active damping, if present, is included inG. The controller H is usually some subset of PID control (i.e. P,
I, PD, etc.). The specific forms of these controllers will be discused next. In the sequel, these schemes will
be analyzed and the analytical results will be compared with previous results obtained by other researchers.
Experimental results with the DD Arm II will be presented in the Chapter 6.

3.2.1 Strategies for Force-Based Explicit Force Control

This section presents the force-based explicit force control strategies that have been considered for this re-
search. Appendix A presents an overview of strategies that have been considered by other researchers. The
strategies presented here are either a generalization of those, or selected to be the most promising for the
reasons given. In all cases, the joint torques commanded by these schemes are obtained through the transpose
of the Jacobian, and gravity compensation is employed.

Proportional Control The chosen form of proportional gain force control is:

f = fc + Kfp(fc � fm) � Kv _xm (3.1)

The feedforward term is necessary to provide a bias force when the force error is zero — without it the system
is guaranteed to have a steady state force error.

Integral Control The chosen form of integral control is extremely simple:

f = Kfi

Z
(fc � fm)dt � Kv _xm (3.2)

Proportional–Integral Control The form of PI control considered for this discussion is:

f = Kfp(fc � fm) + Kfi

Z
(fc � fm)dt � Kv _xm (3.3)

No force is fed forward since the integral term can provide the needed bias force.
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Proportional–Derivative Control The most basic form of PD control considered is:

f = fc + Kfp(fc � fm) + Kfd

d

dt
(fc � fm) � Kv _xm (3.4)

As with proportional control, the feedforward term is necessary to provide a bias force at steady state.

Proportional–Derivative Control Often, the force signal is very noisy and must be filtered before a
derivative may be taken. Therefore, a simple dominant pole filter may be employed in the feedback path
(L = a=(s+ a)). The resultant control law in the Laplace domain is:

F (s) = Fc(s) + [Kfp +Kfds]

�
fc �

�
a

s+ a

�
fm

�
� KvsXm (3.5)

3.2.2 Analysis of Force-Based Explicit Force Control

Given the wide spectrum of approaches and results reported in the literature, it is worthwhile to take a second
look at these control strategies. Each will be analyzed below using the plant model previously developed.

Proportional Control

For proportional control,H = Kfp, andL = 1 in Figure 3.1. While the value of the feedforward termR
does not affect the characteristic equation, a value different than unity will not cancel the reaction force from
the environment, and the controller will not converge to the desired value. The feedforward term will be
discussed further below. The closed loop transfer function with the feedforward term is:

Fc
Fm

=
(1 +Kfp)G

1 +KfpG
(3.6)

This is a Type 0 System and will have a nonzero steady-state error for a step input. The root locus of this
system is shown in Figures 3.2 and 3.3. The corresponding Bode plots are shown in Figure 3.4.

As can be seen from the root locus, both the sensor poles and the environment poles move away from
the real axis for increased proportional gain. Thus the system becomes more oscillatory. However, the
environmental poles go to a pair of zeros, while the sensor poles go to infinity. Thus, the system remains
stable, but oscillations are likely to occur near the natural frequency of the environment. Further, note that the
poles can move into the right half plane, making the proportional gain controller unstable. This is contrary
to the predictions of other researchers, and results from the use of a plant model that was not experimentally
derived [14].

The Bode plots further illustrate this problem. There is a resonance peak from the environment dynamics,
which corresponds to the normal mode discussed in the last chapter. After this peak there is a 40 dB/decade
drop-off which gives a minimum phase margin of� 15� atKfp � 1.

The addition of a feedback lowpass filter,L = 1
s+a , can reduce the magnitude of the resonance peaks.

The corresponding closed loop transfer function becomes:

Fc
Fm

=
(R+Kfp)G

1 +Kfp(
1

s+a )G
(3.7)

The root locus is modified by the presence of a pole on the real axis that moves left froms = �a. Depending
on the magnitude ofa, this pole can reduce the response of the resonance peak. Fora ! 1 this becomes a
pure proportional controller. Fora! 0 this scheme is very similar to integral control, discussed below. (For
this reason, filtered proportional control will not be implemented later in Chapter 6.) Improved response with
lowpass filtering has been reported [1].

It will prove useful later (in a discussion of Impedance Control) to now discuss the feedforward term in
more detail. As stated above, it is desirable that the feedforward term be unity (R = 1) in order to cancel the
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Figure 3.2: Root locus for the fourth order model under proportional gain explicit force control.
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Figure 3.3: Enlargement of root locus in Figure 3.2 withKfp values of 0 to 1.5 in steps of 0.1 .
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Figure 3.4: The resonance peak occurs near the natural frequency of the environment. The gain margin is
1.2 at! = 118rad=s, which corresponds to the root locus crossing to the right half plane in Figure 3.3.
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Fc
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Fm

Figure 3.5: Block diagram a force-based explicit force controller with proportional gain and unity feedfor-
ward. The plantG has be expanded into its components, and the sensor dynamics have been ignored.

H’ = H + 1
mF

EA
cF

Figure 3.6: Block diagram a force-based explicit force controller with proportional gain and extra feedback
for reaction force compensation. The plantG has be expanded into its components, and the sensor dynamics
have been ignored.

environmental reaction force during steady state. Also, it will be assumed that no feedback filtering is being
employed (L = 0). Further, the plant will be expanded into its arm and environmental components, but the
sensor dynamics will be ignored. This yields a block diagram for the system as in Figure 3.5. The transfer
function of this system is:

Fm
Fc

=
(H + 1)G

1 + (H + 1)G
(3.8)

=
H 0G

1 +H 0G
(3.9)

whereH 0 = H + 1. It is seen directly that an equivalent block diagram of the system may be constructed as
in Figure 3.6. Viewed in this way, the reaction force is negated explicitly, and the proportional gain may have
valuesH 0 = K 0

fp � 0 orH = Kfp � �1. Thus, the proportional gain of the original controller may be as
small as negative one. The use of negative gains like this have appeared in the literature previously [19, 23].
However, this result is usually presented within the framework of impedance control. As will be seen in the
next chapter, the impedance controllers for which this result as obtained actually contain proportional gain
explicit force control, which mandates the result.

Integral Control

For integral control,H =
Kfi

s
, andL = 1 in Figure 3.1. A nonzero feedforward term yields the following

transfer function:
Fc
Fm

=
(R +

Kfi

s
)G

1 +
Kfi

s
G

(3.10)

LettingR be unity places a closed loop zero ats = �Kfi which limits the effectiveness of the integrator
pole. Also, a feedforward signal is not necessary since the integrator will eliminate any steady state error for
a constant input. Therefore,R is set to zero and the transfer function is:

Fc
Fm

=

Kfi

s
G

1 +
Kfi

s
G

(3.11)
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Figure 3.7: Root locus for the fourth order model under integral gain explicit force control.

This is a Type 1 System and has a finite error to a ramp input. The root locus of this system is shown in
Figures 3.7 and 3.8. The corresponding Bode plots are shown in Figure 3.9.

As can be seen in the root locus plot, the introduction of the integral pole moving to the left causes the
environmental and sensor poles to move right. The environmental poles can actually move into the right half
plane before completing their semicircular trajectory to a pair of zeros. This has been previously viewed as
destabilizing [14]. In the previous section, the sensor poles caused this same behavior from a proportional
controller. The two root loci are compared in Figure 3.10. As can be seen, the loci are similar except that the
integral controller has the benefit of a dominant low pass pole on the real axis. The Bode plots indicate that
the low pass nature of integral control hides the resonance spikes well below unity magnitude. The point of
zero phase margin indicates a maximum integral gain ofKfi � 10.

Proportional–Integral Control

A PI controller is a linear combination of the above two schemes. In this case,H = Kfp +
Kfi

s
, L = 1, and

for reasons mentioned above,R = 0. Therefore, the transfer function is:

Fc
Fm

=

�
Kfp +

Kfi

s

�
G

1 +
�
Kfp +

Kfi

s

�
G

(3.12)

Obviously, the behavior is a combination of the behaviors of pure proportional and pure integral control.
The appearance of the root locus and Bode plots will depend on the gain which is varied.
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Figure 3.8: Enlargement of root locus in Figure 3.7 withKfi values of 0 to 30 in steps of 1.

Proportional–Derivative Control

A PD controller includes a derivative term with the proportional control discussed above. In this case,H =
Kfp + sKfd, L = 1, and for reasons mentioned above,R = 1. Therefore the transfer function is:

Fc
Fm

=
(R +Kfp +Kfds)G

1 + (Kfp +Kfds)G
(3.13)

Choosing a specific value ofKfp with Kfd = 0 will determine the starting place of the root locus ofKfd.
This starting place will be somewhere on the root locus ofKfp in Figure 3.2. Independent of the starting point
the root locus will have similar characteristics. ForKfp large, the derivative term will have no influence, so
the controller and its root locus can be approximated as those for proportional control alone. ForKfp = 0 this
scheme will reduce to pure derivative control which will not follow the reference force. However, the transfer
function and associated root locus forKfp = 0 represent the extreme of the behavior for a PD controller. Just
as the behavior of PI control was intuited from that of P and I control alone, the behavior of PD control can
be best understood by studying its extremes of pure proportional and pure derivative control. Thus,Kfp is
considered zero in the following discussion. The resulting root locus is shown in Figure 3.11 and 3.12 The
corresponding Bode plots are shown in Figure 3.13.

As can be seen in the root locus plot, for a certain range of gains, derivative control moves all of the poles
further left, thus appearing to make the system more stable. For this reason, PD control has been predicted to
be very stable [14].

However, the Bode plots of the system shows a major problem with this approach. Derivative control
acts as a band pass filter, passing the resonant frequency. This surely will drive an underdamped system into
oscillation.

Another implementational factor must be considered with respect to derivative control. Typically, the
feedback signal from a force sensor is very noisy. One example can be seen in Figure 6.4. Taking the
derivative of such a signal is not advisable. However, filtering may be effective. Passive filtering may be
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Figure 3.9: The resonance peak corresponds to the natural frequency of the environment, but remains under
a magnitude of one for gains of� 10. The phase margin remains near90 deg as well. The gain margin is 28
at! = 85rad=s, which corresponds to the root locus crossing to the right half plane in Figure 3.8.
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Figure 3.10: Comparison of proportional (solid) and integral (dotted) gain root loci.
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Figure 3.11: Root locus for the fourth order model under derivative gain explicit force control.



CHAPTER 3. DISCUSSION AND ANALYSIS OF EXPLICIT FORCE CONTROL SCHEMES 42

-400

-300

-200

-100

0

100

200

300

400

-200 -150 -100 -50 0 50

real

im
ag

in
ar

y

Figure 3.12: Enlargement of root locus in Figure 3.11 withKfd values of 0 to 0.02 in steps of 0.001 .

accomplished by the use of a compliant sensor or sensor cover. As mentioned earlier, this method can
introduce uncontrolled degrees of freedom to the system, or reduce the effective force that may be applied.
Alternatively, active filtering may be used. This will be discussed next.

Filtered Proportional–Derivative Control

To filter the force signal a dominant pole filter may be used, placing the transfer functionL = a
s+a in the

feedback path. Therefore the transfer function becomes:

Fc
Fm

=
(R +Kfp +Kfds)G

1 + (Kfp +Kfds)
�

a
s+a

�
G

(3.14)

As before,Kfp is chosen to be zero for this analysis. Choosinga ! 1 will not make an effective filter of
the high frequency noise. Choosinga ! 0 will make this a proportional gain controller. Thus, the extreme
case of lowpass filtering changes this to a proportional gain controller. Proportional gain control has already
been shown to ineffectively mask the resonance oscillation of the system.

For the case of nonzeroKfp anda ! 0, the characteristic equation becomes that of a PI controller. As
discussed before, the responses of this controller will be between that of P and I control alone.

3.2.3 Discussion of Explicit Force Control

It seems apparent from the above analysis that explicit force control with the experimentally determined plant
is best accomplished by integral control. First, the integral controller is a Type 1 System and will have zero
steady-state error for a constant reference force. Second, an integral control acts as a low pass filter, reducing
the chance of resonance oscillations occurring in the system. This is deemed to be very important. Higher
order modes of oscillation can cause the assumed model to become invalid and actually make the system
nonlinear, especially if separation from the environment occurs.
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Figure 3.13: The resonance peak corresponds to the natural frequency of the environment. Thus, this con-
troller acts as a band pass filter for the resonant frequency of the system.
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Figure 3.14: Block diagram of a generic position-based, explicit force controller.

One of the main arguments against integral control is that it does not permit fast force trajectory track-
ing. However, this goal is simply not achievable for a manipulator that is not mechanically attached to the
environment. A simple argument should demonstrate this point. Consider a manipulator that is pressing on a
surface with a natural frequency of oscillation. Between the manipulator and the surface there is no physical
compliance. Consider also that the manipulator is to reduce its applied force. If the rate of the reduction is
greater than the natural frequency of the environment then contact will be lost. In other words, the arm will
pull away faster than the environment can respond. Lost contact can cause instability to develop and should
be avoided. Therefore, it can be simply put thatthe force control response time is limited by the environ-
mental dynamics. This is seen directly in the integral control root locus and Bode plots above, Figures 3.8
and 3.9. The limiting value ofKfi obtained from the phase margin in the Bode plots, places the integral pole
just to the right of the environmental poles.

3.3 Position-Based Explicit Force Control

A second class of explicit force controllers consists of those based on an inner position loop. These controllers
were probably implemented first for practical reasons — most commercial manipulators have built in position
controllers and don’t allow direct access to actuator torques. As shown in Figure 3.14, the outer force loop
provides a reference position to the inner position loop. In this diagram,W is the position controller which
is typically a PD controller:

W = Kp +Kvs (3.15)

The commanded force is transformed into a commanded position through an admittance, which is described
as the inverse of a second order impedance:

I = mfs
2 + cfs+ kf (3.16)

Again the joint torques are obtained through the transpose of the Jacobian, and gravity compensation is
employed. The plant damping,c1 in the system plantG, is again provided actively by the velocity gainKv.

Appendix A presents an review of position-based force control implementations that have been performed
by other researchers.

3.3.1 Analysis of Position-Based Explicit Force Control

Ensuring a Type 1 System

As has been stated previously, a Type 1 System is desirable because it has zero steady-state error to a constant
input. Previous analysis of the position-based controllers, especially that of DeSchutter, indicates the need to
consider three controllers that must become Type 1 Systems [11]. These are: position and velocity feedback,
position feedback only, and no inner loop feedback. The previous work, coupled with the plant model devel-
oped in this thesis, indicates a new and novel way in which to view inner position loop-based explicit force
control. As will be seen, the previously reviewed force-based explicit force controllers are actually a subset
of this strategy.
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Figure 3.15: Reformulation of the block diagram of generic position-based, explicit force controller.

Consider first the position-based force controller that uses velocity as well as position feedback (W =
Kp + Kvs). Deschutter’s results indicated that the outer force controller providing commanded positions
must have at least one free integration. To achieve this the force controller must beI = s(mfs + cf ). This
is essentially a second order low pass filter. Contrary to this is the first order low pass filter which will have a
nonzero steady state error [25].

Next, consider the position-based force controller that uses only velocity feedback (W = Kvs). For this
scheme, the outer force loop must provide a reference velocity, as well as satisfy the criterion of at least
one free integration. This impliesI = mfs. Notice that this scheme is exactly what has previously been
considered as explicit force control with active damping. Viewed in this way, the velocity feedback is not just
added to improve damping. Instead, it is part of a inner loop, position-based, feedback controller.

Finally, the third case of no inner loop (W = 0) reduces to the second case since the transfer function of
the arm, sensor and environment does not change form when the active damping is removed. This is because
velocity feedback is still present in the system even though it is not from active feedback.

Position-Based Explicit Force Control Viewed as Force-Based Explicit Force Control

Having shown the correspondence between position-based and force-based explicit force control, it is pos-
sible to change the first into the second. Consider separating the position controller in Figure 3.14 into two
parts,W1 andW2. Figure 3.15 shows the resultant controller block diagram.

It can now be seen that the inner loop is identical to Figure 2.7, the model of an arm with damping and
stiffness for the case of no environmental interaction. With the environment included, its mass, damping,
and stiffness parameters simply add to those of the arm. The result is still essentially the same. Thus,Kp is
equivalent tok1 in the fourthorder model of the plant. From, Equation (2.18) it can be seen that the addition
of more stiffness to the characteristic equation (ke ! ke + k1), will make the poles more oscillatory. Thus,
the innerloop position controller makes the plant more stiff and oscillatory. The resultant outer loop force
controller, however, can still assume any of the forms of force-based control previously discussed. This is
shown below. It is therefore concluded thatposition-based force control differs only from force-based force
control by the addition of stiffness to the plant. Further, this additional stiffness is destabilizing.

The outer loop of the position-based force control can be shown to assume the form of any of the force-
based explicit force controller previously discussed. Consider the form of the controller shown in Figure 3.15.
It is also apparent that the controller now has a form previously associated with force-based explicit force
control, where

H =
W1

I
=

Kp +Kvs

mfs2 + cfs+ kf
(3.17)

Notice that all of the explicit force controllers can be constructed from this transfer function:

Proportional Control 1 Kfp = Kp=kf Kv = mf = cf = 0

Proportional Control 2 Kfp = Kv=cf Kp = mf = kf = 0

Integral Control 1 Kfi = Kp=cf Kv = mf = kf = 0
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Figure 3.16: Root locus for the fourth order model under explicit force control with a second order lowpass
filter.

Integral Control 2 Kfi = Kv=mf Kp = cf = kf = 0

Derivative Control Kfd = Kv=kf Kp = mf = cf = 0

PI Control Kfp = Kv=cf ;Kfi = Kp=cf mf = kf = 0

PD Control Kfp = Kp=kf ;Kfd = Kv=kf mf = cf = 0

Filtered P Control Kfp=(s+ a) = Kp=(cfs+ kf ) Kv = mf = 0

Filtered PD Control (Kfp+Kfds)=(s+a) = (Kp+Kvs)=(cfs+kf ) mf = 0

2nd Order Low Pass Filter Kfp=(s(s+ a)) = Kp=(s(mfs+ cf ) Kv = kf = 0

The only new controller in this list is the second order lowpass filter. It will be discussed in the next
section.

Root Locus and Bode Plots

Finally, it is worthwhile to look at the root locus and Bode plots for a what has been called a position-based
explicit force controller. As has been discussed above, the only controller from that is newly introduced by
this concept is the second order low pass filter. Like the first order dominant pole introduced by low pass
filtering or integral control, the two poles introduced by a second order filter should be placed to the right of
the environment poles. Since the controller has been chosen to be Type 1, one of the poles is constrained to
begin its locus at the origin. Thus the other should begin to the left of the environmental poles. As the gain is
increased, the filter poles on the real axis will come together and give a double pole filter. Ideally, this double
pole should be just to the right of the environmental poles. A root locus fora = 20 is shown in Figures 3.16
and 3.17. The corresponding Bode plots are shown in Figure 3.18.
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Figure 3.17: Enlargement of root locus in Figure 3.16 withKf values of 0 to 2000 in steps of 10. The poles
move very slowly once off the real axis.

3.4 Conclusions

This chapter has presented a stability analysis of various explicit force control routines using the plant model
developed in Chapter 2. This work is unique in its broad coverage of control strategies and use of an exper-
imentally determined plant model. The results also contradict the predictions of other researchers [14], but
are confirmed by experimental implementation (as will be shown in Chapter 6).

This analysis has indicated that integral control is the best choice for explicit force control. This is because
of its simple form, lowpass nature, and its zero steady state error for a constant reference force. A possible
second choice is the second order lowpass filter. Although, slightly more complicated than simple integral
control it promises to filter the force oscillations better with two real axis poles. Proportional control is the
third choice. However, with this controller the dominant poles are complex, indicating that oscillations will
occur for even low gains. Further, the analysis shows that proportional gain control becomes unstable, which
has not previously been predicted. Finally, any control using the derivative of the force signal does not seem
promising. This type of controller will act as a band pass filter at the natural frequency of the system. Also,
obtaining a good derivative of the force signal may prove difficult.

The behavior of the proportional gain force controller should be kept in mind. As will be seen in the next
chapter, the most common forms of impedance control contain proportional gain explicit force control within
them. This will prove interesting, since it has been shown in this chapter that proportional control of force is
not best.
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Figure 3.18: Note that the resonance peak is almost completely suppressed. The gain margin is 1854 at
! = 48, which corresponds to the root locus crossing to the right half plane in Figure 3.17.



Chapter 4

Discussion and Analysis of Impedance
Control Schemes

4.1 Introduction

As discussed earlier, Impedance Control is a strategy that controls the dynamic relation between the manip-
ulator and the environment. The force exerted on the environment by the manipulator is dependent on its
position and its impedance. Usually this relation is expressed in Cartesian space as:

f = Z(x): (4.1)

The impedance consist of two components, that which is physically intrinsic to the manipulator, and that
which is given to the manipulator by active control. It is the goal of Impedance Control to mask the intrinsic
properties of the arm and replace them with the target impedance.

In general, the impedance can have any functional form. As will be seen in Chapter 7 such general
impedances are useful for obstacle avoidance. However, it will be made clear in this chapter that sensor
based, feedback controlled interaction with the environment requires the impedance to be linear and of second
order at most. This is for two reasons. First, the dynamics of a second order system are well understood and
familiar. Second, for higher order systems it is difficult to obtain measurements corresponding to the higher
order state variables.

To implement Impedance Control, model based control can be used. This type of scheme relies on the
inverse of the Jacobian. A second type of controller which uses the transpose of the Jacobian is sometimes
employed. However, it will be shown that this type of controller is really a reduced version of the first, and
ignores all non-linearities of the system.

More important to this thesis, both forms of Impedance Control will be shown to contain proportional
gain explicit force control (with feedforward). Also, for stiff environments the position feedback is essentially
constant, and impedance control reduces directly to proportional gain force control. The role of proportional
gain force control in impedance control, and their equivalence when in contact with stiff environments, has
not been recognized or demonstrated previously.

This chapter is organized as follows. First, the order of the desired impedance will be discussed and
the implications for implementation will be shown. Second, the Jacobian transpose and the Jacobian inverse
implementation strategies will be presented and discussed. Then, much of the previous research in Impedance
Control will be discussed. It will be shown how each strategy fits into the Impedance Control framework.
Also, it will be shown how each scheme contains explicit force control. In this way and with knowledge from
the previous chapter, it will be possible to make comments on the efficacy of each strategy.

49



CHAPTER 4. DISCUSSION AND ANALYSIS OF IMPEDANCE CONTROL SCHEMES 50

4.2 Zeroth, First, and Second Order Impedance

A linear impedance relation may be represented in the Laplace domain as:

F = Z(s)X: (4.2)

The order of the polynomialZ(s) is the order of the impedance.
The simplest form of an impedance controller has a zeroth order impedance. In this caseZ is a constant

and
F = KX: (4.3)

The impedance parameterK is the desired stiffness of the manipulator. When a manipulator has no intrinsic
stiffness,K dictates the apparent stiffness of the arm. This is accomplished with active control that uses
position feedback. The value of the active stiffness is the position feedback gain.

A more typical form of an impedance controller is a first order impedance. In this case:

F = (Cs+K)X: (4.4)

The added parameterC is the desired damping of the manipulator. It is equal to the sum of the active and
natural damping. The active damping is accomplished by velocity feedback in a position controlled system.
The value of the active damping is the velocity feedback gain. Since the active damping can be modified,C
can take on any value which maintains stability. In fact, negative active damping can be used to eliminate the
appearance of any damping in the arm. This is rarely desirable, since damping has a stablizing effect.

The last form of Impedance Control that shall be considered here is a second order type. The second
order impedance controller has the form:

F =
�
Ms2 + Cs+K

�
X: (4.5)

The new parameterM is the desired inertia of the manipulator. While the arm has an intrinsic inertia due to
its mass, this can be modified by active feedback. It follows from the previous two cases that acceleration
feedback can be used for this purpose. In this case, the value of active inertia is the acceleration feedback gain.
Its value can be used to adjustM . Few researchers have proposed such acceleration feedback schemes for
Impedance Control [18]. This is because an acceleration measurement typically requires a second derivative,
which will be extremely noisy. Instead, force feedback is used, as will be shown.

4.3 Model Based Control

Model based control involves the use of a dynamic model of the manipulator to determine the actuation
torques [6]. As will be seen, a Cartesian space position control law which includes the dynamic model of the
arm must utilize the inverse of the Jacobian.

Consider the mathematical representation of the physical arm and its modelled counterpart:

Physical : �A = DP (�)�� + hP (�; _�) + gP (�)� �P (4.6)

Modelled : �A = DM (�)u+ hM (�; _�) + gM (�) � �M (4.7)

where�A are the actuator torques,D is the manipulator inertia,h are the Coriolis and centripetal torques,g
is the gravitational torque,� are the reaction torques from environmental interactions, andu is the control
signal. The idea of model based control is to compute the actuator torques according to the model (the latter
equation), and apply them to the arm (the former equation). Thus, this control strategy is often know as
computed torque. The resultant acceleration of the arm is:

�� = D�1
P [DMu+ (hM � hP ) + (gM � gP )� (�M � �P )] (4.8)

� u (4.9)
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The approximation is valid for any reasonably good model of the manipulator. It has been shown that knowl-
edge of the manipulator inertias to within 10% is sufficient [32].

The very important result of computed torque is that it provides a way to compensate for all of the
non-linearities of the manipulator dynamics. Thus, a linear control signal,u, will provide the desired joint
accelerations in the manipulator. The problem them becomes one of choosingu, which is essentially the
desired joint accelerations.

For a Cartesian space position controller, the desired joint acceleration must be obtained from the desired
Cartesian acceleration. First, it is known that:

_x = RJ _� = J _� (4.10)

whereR is a rotation matrix from the end effector frame to the world frame, andJ is the manipulator
Jacobian. Taking the derivative of this equation and solving for the angular acceleration gives the control
signal:

u = �� = J�1
�
�x� _J _�

�
(4.11)

whereJ is the manipulator Jacobian. Thus it is still necessary to define the desired Cartesian acceleration.
This is accomplished by specifying the desired behavior of the manipulator to be a second order impedance:

M �x� C� _x�K�x = f: (4.12)

The impedance parameters,M , C, andK may be chosen. The variablex and its derivatives are obtained
from the transformation of the corresponding angular values:

�x = xc � xm = xc �F(�m) (4.13)

� _x = _xc � _xm = _xc � J _�m (4.14)

whereF represents the forward kinematics, andc andm denote the commanded and measured quantities.
For a physical system represented by Equation (4.12), the commanded values act as offsets to the variable
(measured) quantities.

Finally, the force,f , corresponds to the physical force exerted on the manipulatorJT f = �P . Thus,

f = freaction = �fapplied � �fmeasured � �fm: (4.15)

This value of the measured force may then be substituted into Equation (4.12) for the desired behavior and
Equation (4.7) for the arm model.

Summarizing,

�A = Du+ h+ g + JT fm (4.16)

u = J�1
�
�xu � _J _�m

�
(4.17)

�xu = M�1 [(C� _x +K�x)� fm] (4.18)

�x = xc � L(�m) (4.19)

� _x = _xc � J _�m (4.20)

The next two sections will illustrate the use of these equations. The first section shows the use of the full
dynamics implementation, while the second section shows the use of a steady state simplification.

4.4 Control with Full Dynamics

This section illustrates the control schemes that have utilized the model based control described in the previ-
ous section.
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4.4.1 Computed Torque

Computed Torque was the first scheme to use Equation (4.16) to calculate and compensated for the nonlinear
dynamics of a manipulator [44]. However, the trajectory is still expressed in joint space as:

u = ��c + K!( _�c � _�m) + K�(�c � �m) (4.21)

It has been shown that the fastest method of calculating the Computed Torque is by using Newton-Euler
recursion [32].

4.4.2 Resolved Acceleration Control

Resolved Acceleration Control was the first scheme to use Equation (4.17) to resolve the desired Cartesian
acceleration into joint space, for use in the Computed Torque scheme [40]. The Cartesian acceleration was
specified as:

u = �xc + Kv( _xc � _xm) + Kp(xc � xm) (4.22)

It can be seen that this equation corresponds to Equation (4.18) where

Kv = M�1C (4.23)

Kp = M�1K (4.24)

�xc = �M�1fm (4.25)

This last equation seems strange at first, since Resolved Acceleration Control does not interact with the
environment (fm = 0). However, the feedforward acceleration can be thought of as the result of anartificial
force. This force is exerted by the environment only in computer model of the world, and is calculated
from the gradient of a modelledartificial potentialfield. One excellent use of artificial forces is for obstacle
avoidance strategies in which objects to be avoided are surrounded by repulsive potentials. This concept will
be discussed at length in Chapter 7.

4.4.3 Operational Space Control

Operational Space Control was the first formulation to resolve the dynamic equations into Cartesian space [29].
This scheme is essentially equivalent to Resolved Acceleration Control [34]. It appears very different, how-
ever, because the dynamic equations are expressed in Cartesian, oroperationalspace. The transformation of
Equation (4.16) can be readily accomplished by using the relation:

� = JTF (4.26)

Thus, from Equations (4.16) and (4.18) withfm = 0:

FA = (JT )�1�A =
�
JT
��1

DJ�1
�
�x� _J _�

�
+
�
JT
��1

h +
�
JT
��1

g

=
�
JT
��1

DJ�1�x +
�
JT
��1

�
h�DJ�1 _J _�

�
+
�
JT
��1

g

= �(x)�x + �(x; _x) + p(x): (4.27)

wherep(x) is the gravity compensation term and� is the corrected Coriolis and centripetal forces. Also, the
relation

D(�) = JT�(x)J (4.28)

expresses how the manipulator inertia is related to its Cartesian space counterpart, which is the expression of
the inertia at the end effector of the arm. The above equation for the arm dynamics may be further modified
by pre-multiplying by the transpose of the Jacobian:

� = JTF = JT�(x)�x + ~b(�; _�) + g (4.29)
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where
~b = h�DJ�1 _J _� (4.30)

The above two equations represent the heart of the operational space representation.
The value of�x is obtained from the equivalent of Equation (4.18) withM = 1. Since it only appears as

a ratio with the arbitrary constantsC andK, any value other than unity provides equivalent results. Also in
Equations (4.16) and (4.18),fm = 0 since this scheme does not consider environmental interaction. Unlike
Resolved Acceleration Control, no artificial force is employed to provide a feedforward acceleration term,
�xc. Thus,

�xc = (C� _x +K�x) : (4.31)

The absence of a feedforward term is one of the small ways in which this scheme differs from Resolved
Acceleration Control. Another possible difference is that the Operational Space formulation was expanded
to include the case of redundant manipulators. However, the same methodology can be used for Resolved
Acceleration Control since the modifications are only with respect to the calculation of�xc, which becomes
more general than Equation (4.18). In fact, it has been pointed out that Resolved Acceleration and Operational
Space Control are essentially equivalent, and they also are part of the larger category of Geometric Control
Theory [34].

Finally, it should be pointed out that the Operational Space formulation is mostly valuable as a conceptual
tool. For implementational purposes, the arm dynamics are best calculated with the Resolved Acceleration
formulation, which is expressed in joint space and utilizes the speed of the Computed Torque technique
directly.

4.4.4 Second Order Impedance Control

Unlike the above two schemes, this scheme utilizes force feedback in its use of Equation (4.18). This should
mean little difference in the expression of the control, but again it looks very different. First, Equations (4.17),
(4.18) in (4.16) yield:

� = DJ�1M�1 (C� _x +K�x� fm) � J�1 _J _� + h + g + JT fm: (4.32)

Equation (4.28) then gives:

� = JT�M�1 (C� _x+K�x� fm) � JT� _J _� + h + g + JT fm: (4.33)

Next, this controller employs the mobility tensorW which is the inverse of the Cartesian representation of
the manipulator mass:

W � ��1 (4.34)

Using this relation in the above equation gives:

� = JTW�1M�1 (C� _x+K�x� fm) � JTW�1 _J _� + h + g + JT fm (4.35)

= JTW�1M�1 (C� _x+K�x)h � JTW�1 _J _� + JT
�
1�W�1M�1

�
fm + g (4.36)

Adding confusion to this equation is the inclusion of the following identity:

h =
h
JT
�
JT
��1

DJ�1JD�1
i
h = JTW�1JD�1h (4.37)

This changes the above equation to:

� = JTW�1M�1 (C� _x +K�x) + JTW�1
�
JD�1h� _J _�

�
+ JT

�
1�W�1M�1

�
fm + g (4.38)

This is the expression of Impedance Control in the above references.
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Second order impedance control differs from the schemes previously presented, because it uses force
feedback. First, this feedback is used in the physical model of the arm dynamics, Equation (4.16). This
is equivalent to introducing end effector forces into the Newton-Euler dynamics calculations. Second, the
feedback is used in the impedance relation, Equation (4.18). While Equation (4.16) effectively linearizes the
arm, Equation (4.18) modifies the Impedance Control signal to compensate for the experienced force.

It can now be seen that it is the force feedback in the control signal which modifies the apparent inertia
of the arm [23]. Equation (4.33) best shows this effect. In this controller, as with the previous ones, the
premultiplication ofK andC by �M�1 changes nothing. However, this is not true for the force feedback
signalfm. The term�M�1 is a mass ratio that reduces or increases the amount of actuator torque applied.
For simplicity sake, it will be assumed that the impedance parameters are diagonal in the Cartesian space
defined by the eigenvectors of�. In this case,�M�1 (or its diagonalized counterpart) can be thought of as a
matrix of mass ratios along the diagonal. Since� is due to the physical inertia of the arm, it is the impedance
parameterM which determines each ratio. ForM ! 0 the ratio becomes very large; for a small measured
force, a large accelerating torque is applied to the arm. Thus, the apparent inertia of the arm is reduced. (It is
important to remember that the external force does not cause the acceleration because it has been effectively
negated by theJT fm term.) Similarly, forM !1 the ratio becomes very small; for a large measured force,
a small accelerating torque is applied to the arm. Thus, the apparent inertia of the arm is increased. In this
way, second order impedance control not only changes the stiffness and damping properties of the arm, but
its inertia as well.

4.5 Control with a Steady State Approximation

This section discusses some control schemes that have used a steady state approximation of the model based
control strategy outlined previously. For the steady state, all velocities in the dynamics equations are assumed
zero. Therefore, all compensation terms with velocity dependence are zero:

_� = _J = h
�
�; _�
�

= 0 (4.39)

Thus, Equations (4.16) through (4.18), and Equation (4.28) gives:

�A = JT�M�1 [(C� _x +K�x)� fm] + JT fm + g (4.40)

Because no dynamic compensation is done in this scheme, the matrices�M�1, �M�1C, and�M�1K can
be chosen to be diagonal gain matrices.

While not as accurate as the full dynamics representation, this approach has one major advantage. There is
no inverse of the Jacobian, which can become singular. Therefore, this type of control scheme is much more
robust but much less accurate, especially for situations in which the velocity is not really zero. However,
these differences disappear when the arm is constrained by a stationary environment. The following section
describes a control scheme which subscribed to this reduced dynamics framework.

4.5.1 Second Order Impedance Control

Second order impedance control without dynamics compensation has been investigated by Kazerooni [28]
and Hamilton [19]. The approach introduced by Kazerooni was to linearize the equations describing the
manipulator by considering small displacements only. Thus, the target second order impedance is present in
the following equation: �

Ms2 + Cs+K
�
�x = �f (4.41)

The manipulator dynamics, similar to Equation (4.6), are:

� = DP (�)�� + hP (�; _�) + gP (�) (4.42)



CHAPTER 4. DISCUSSION AND ANALYSIS OF IMPEDANCE CONTROL SCHEMES 55

where� is the sum of torques given by:
� = Ts�A + JTFe (4.43)

whereTs is the gear ratios, andFe are the external forces. For the DD Arm IITs = 1. From Equation (4.15)
it is known that:

Fe = �fm (4.44)

Considering the small displacement approximation, these equations become:

Ts�� = D��� +
@g

@�
+ JT �fm (4.45)

In the following discussion, it will be assumed that the gravity compensation term is provided separate from
the impedance controller. Thus, this term will not appear explicitly again.

Also introduced in this development is a first order model of the actuator dynamics:

� _�Ai(t)

�i
+ ��Ai(t) = �ui(t) i = 1; 2; : : :N (4.46)

where�i is the bandwidth of each of theN actuators, andu is the input signal. The introduction of the actu-
ator dynamics makes Kazerooni’s development more precise for manipulators that have dynamics. However,
the DD Arm II used later in the experiments of Chapter 6 does not have actuator dynamics. Also, this addi-
tion obscures the role of the impedance parameters in the final solution. Comparisons with other schemes,
therefore, become difficult. For the remainder of this discussion Hamilton’s formulation will be followed
instead.

Hamilton, while first introducing the actuator dynamics, neglects them if� is large. In this case, the
control signal is assumed equal to the actuator torques:

�Ai = ui �i !1 (4.47)

The control law is chosen to be a generic linear controller based on position, velocity, and force feedback.

u = G�(�c � �m)�G!
_�m �Gffm (4.48)

whereGi are the gain matirces to be chosen as in the Computed Torque method,u can be substituted for the
acceleration in Equation (4.45).�

Ds2 +K!s+K�

�
�� =

�
JT �Kf

�
�fm (4.49)

whereKi are obtained fromGi by including the gearing ratios. Comparing this equation for the physical
system under small perturbation, with that for the target impedance, Equation (4.41) gives the following
relations:

M =
�
JT +Kf

��1
DJ�1

C =
�
JT +Kf

��1
K!J

�1 (4.50)

K =
�
JT +Kf

��1
K�J

�1

which can be inverted to give:

Kf = DJ�1M�1 � JT

K! = DJ�1M�1CJ (4.51)

K� = DJ�1M�1KJ
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or, using Equation (4.28) the inertia matrix can be transformed into Cartesian space:

Kf = JT�M�1 � JT

K! = JT�M�1CJ (4.52)

K� = JT�M�1KJ

Hamilton presents three methods for the selection of the gain matrices to ensure stability and positive def-
initeness. The first method, however, supercedes the other two. This method requires diagonalizing� and
choosing the position and velocity gains in the resulting frame. This is equivalent to the method of gain
selection mentioned in the previous section. In fact, using Equations (4.52) with Equations (4.48), (4.47),
(4.43), (4.44), and (4.10) gives:

� = JT�M�1 (�K�x� C� _x� fm) + JT fm + g (4.53)

= JT�M�1 (�K�x� C� _x) + JT
�
1� �M�1

�
fm (4.54)

The first equation is identical to Equation (4.40) as expected. The second equation is equal to Equation (4.38),
considering the steady state assumptions in Equation (4.39). Thus, this scheme is the same as the former
without the velocity dependent dynamics, as predicted.

4.6 Explicit Force Control within Impedance Control

The two second order impedance controllers reviewed above can be shown to contain explicit force control.
This aspect of impedance control has not previously been recognized. While Hogan recognized some cor-
respondence between Impedance Control and explicit force control [23], the relation was not specifically or
clearly stated. A general argument supporting this new interpretation was presented in the introduction. Now,
it will be shown explicitly for the impedance controllers described previously in this chapter. Later, it will be
shown how this framework includes both Stiffness Control, and Accommodation Control.

Consider the two second order impedance controllers represented by Equations (4.33) and (4.53), repeated
here for convenience:

� = JT�M�1 (�K�x� C� _x� fm) + JT fm + g

� = JT�M�1 (C� _x+K�x� fm) � JT� _J _� + h + g + JT fm

These equations are the same except for the inclusion of velocity dependent dynamics, as previously dis-
cussed. Furthermore, the terms that compensate for velocity dependent forces and gravity can be considered
feedforward terms, and ignored for the remainder of this discussion. What is left is an equation for torque of
the form:

� = JTK 0

f (fc � fm) + JT fm � JTKv _xm (4.55)

fc = K(xc � xm) + C _xc (4.56)

K 0

f = �M�1 (4.57)

This formulation is very similar to the proportional gain explicit force controller discussed in Chapter 3.
Since velocity feedback was used in the explicit force controllers, the only major difference here is the use of
the feedback position in the calculation of the commanded force. The commanded velocity can be assumed
to be zero (_xc = 0), which is usually the case.

In the above formulation, the impedance parametersK andC determine the commanded force used in
an explicit force controller with a proportional gain of�M�1. The termJT fm can be seen to negate the



CHAPTER 4. DISCUSSION AND ANALYSIS OF IMPEDANCE CONTROL SCHEMES 57

reaction force that is experienced by the arm. As expressed in the transfer function of Equation (3.9) the
stability of this controller is guaranteed forK 0

f � 0. This is equivalent to the condition:

�M�1 � 0 (4.58)

(Again, it is assumed that the matricesK 0

f and�M�1 are diagonal. Therefore the inequality is considered to
refer to each of the elements individually.) This loosely implies that the open loop pole location of the root
locus corresponds to the impedance parameterM !1 and the zeros indicate a value ofM ! 0. Of course,
this statement is only true if the principal axes of� andM are parallel.

It is also important to note that force control is often used when the manipulator is in contact with a stiff
environment, and_xm = 0 andxm is an arbitrary constant, which can be set to zero. Thus, the commanded
force reduces to:

fc = Kxc + C _xc (4.59)

which has no dependence on position feedback. Again, it is the usual case that the commanded velocity is
zero. It can, therefore, be seen thatsecond order impedance control against a stiff environment is equivalent
to explicit force control with proportional gain and feedforward.

Finally, the presence of a proportional force controller inside the impedance controller presented leads to
the following question: Do other impedance controllers actually contain other types of explicit force control?
The answer is obviously yes. Two of the more famous ones will be reviewed next.

4.7 Impedance Control With Other Types of Explicit Force Control

4.7.1 Accommodation and Resolved Rate Control

Accommodation control has the following form [69, 68]:

� = K�(�r � �m) + K!( _�r � _�m) (4.60)

_�r = _�c � J�1Kfafm (4.61)

This formulation may be modified (using the Laplace domain representation):

T =
K�

s

��
s�d � J�1KfaFm

�
� s�m

�
+ K!

��
s�d � J�1KfaFm

�
� s�m

�
(4.62)

=

�
K�

s
+K!

��
sJ�1 (Xd �Xm)� J�1KfaFm

�
(4.63)

=

�
K�

s
+K!

�
J�1 (s�X �KfaFm) (4.64)

=

�
JTKxJ

s
+ JTKvJ

�
J�1Kfa

�
K�1
fa s�X � Fm

�
(4.65)

= JT
�
KxKfa

s
+KvKfa

��
K�1
fa s�X � Fm

�
(4.66)

Thus, Accommodation Control has the form of an impedance controller with no dynamics compensation, and
a PI internal force controller. Comparing with the form of the previous impedance controllers examined:

M = (KvKfa)
�1 � (4.67)

C = K�1
fa (4.68)

K = 0 (4.69)
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Thus, this controller provides no stiffness to the arm, and a damping that is inversely proportional to the
accommodation gain. The apparent inertia of the arm can be modified by the proportional gain as previously
discussed. However, the integral gain,KxKfa, does not cleanly map into physical impedance analog.

It is also important to note that the PI gain matrices,KxKfa andKvKfa are not diagonal. This is because
the original gains,K� andK! where diagonal in joint space. Obviously, if decoupled Cartesian behavior is
desired the matrices should be chosen diagonal in Cartesian space, not joint space.

Finally, it can be seen that the removal of a force feedback signal,Fm = 0, gives a PI controller which
follows a commanded damping force only. This controller is usually expressed in the form of Equation (4.64).
Because the inverse Jacobian is used to resolve the Cartesian velocities into joint space, this is known as
Resolved Rate Control.

4.7.2 Stiffness Control

Stiffness control has the following form [54]:

T = K!s (�c ��m) + Tc + Kfs

�
s+ a

s+ b

�
(Tc � Tm) +

Kfs

s
(Tc � Tm) (4.70)

Tc = Tb + K� (�c ��m) (4.71)

K� = JTKxJ (4.72)

whereKx is a diagonal Cartesian gain matrix,Tb is a bias torque vector,(s + a)=(s + b) is lead-lag filter.
The bias torque can be eliminated by considering the following identity:

Tb = JTFb = JTKx�Xb = JT
�
JT
��1

K�J
�1�Xb = K���b (4.73)

Thus the bias commanded position can be offset by a bias value in either Cartestian or joint space:

�� =
�
�c +K�1

� Tb
�
� �m (4.74)

The above expression of Stiffness control can be modified so that it can be more easily compared with
the developed framework.

T = K!s�� + JTKxJ�� + Kfs

�
s+ a

s+ b
+
Kfs

s

� �
JTKxJ��� Tm

�
(4.75)

= K!s�� + JTKx�X + Kfs

�
s+ a

s+ b
+
Kfs

s

�
JT (Kx�X � Fm) (4.76)

In this form, Stiffness control can be seen to be a variation of Impedance Control with an internal force
controller that uses integral and lead-lag compensation, and a feedforward signal. While, the impedance
stiffness parameter is obvious (K = Kx), other correspondence is not so strict. The active damping is
performed in joint space and is not passed though the explicit force controller. Inertial modification does not
appear since there is not proportional force gain. However, this controller was designed for stiffness control
only, and modification of other impedance characteristics is not a design goal. Therefore, this is a zeroth
order, or at best a first order impedance controller.

4.8 Conclusion

This chapter has provided a review of some of the major Impedance Control strategies that have been pro-
posed. It is well known that the stiffness and damping of the manipulator can be modified by position and
velocity feedback. This is usually the type of control that is provided in position controlled arms. However,
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if the manipulator is to interact with the environment, then force sensing is usually employed in a method of
actively modifying the apparent inertia of the manipulator. This force feedback loop constitutes an inner loop
explicit force controller.

This chapter has made clear for the first time the fact that impedance control schemes that modify the
arm’s inertia are effectively using explicit force control with proportional gain and feedforward (plus a damp-
ing term). In this case, inertial modification is equivalent to changing the force control gain. Further, for a
stiff environment the second order impedance control is equivalent to proportional gain force control. This
will be demonstrated experimentally in Chapter 6.

Finally, recognition of equivalence of second order impedance control to explicit force control with
proportional gain has provided some new understanding. The first insight is that other impedance control
schemes contain other explicit force control strategies (PI for example). However, pursuing these different
impedance control strategies does not seem worthwhile when the explicit force controllers can be used di-
rectly. A second insight is that proportional force control gains down to negative one can be stably used, and
are equivalent to impedance mass ratios increasing to infinity. This knowledge is extremely useful for the
stable control of impacts with the environment, as will be discussed in the next chapter.



Chapter 5

Impact Control

5.1 Introduction

There are two extreme modes of operation for a manipulator: position controlled motion through free space,
and force controlled interaction while constrained by the environment. Obviously the manipulator must
change from one mode to the other readily. Usually switching from constrained force control to uncon-
strained position control presents no problems. However, switching from free space motion to constrained
force control has the significant problem of impact forces. These forces can be very large, and can drive an
otherwise stable controller into instability. Typically, it is the force control strategy that must deal with this
transient phenomenon, since the large force does not occur until after contact has occurred. However, the nat-
ural elasticity of an impact, or the response of the force controller to the transient, can cause the manipulator
to rebound from the environment. Thus, the manipulator is once again unconstrained. This phenomenon can
establish oscillatory behavior. Obviously it is the goal of any controller to pass through this transitory period
successfully, and have the manipulator stably exerting forces on the environment in the end. The controller
must, therefore, pass through the impact phase by attempting to maintain contact with the environment until
all of the energy of impact has been absorbed. To maintain stability and contact during this phase, a novel
method ofimpact controlis presented in this chapter.

Previous research in force control has treated the impact phase as a transient that is dealt with by the same
controller used to follow commanded force. The form of the force controller is typically one of those strate-
gies that has been presented in Chapters 3 and 4. In this chapter it will be shown that the best implementation
of these strategies for force following is insufficient for impact control. But, the impact controller presented
here still fits into the complete framework of force control that has been developed. To understand this, the
previous schemes will be briefly discussed and their weaknesses revealed. Then a newly proposed impact
control strategy will be presented in the context of explicit force control and impedance control.

5.2 Previously Proposed Methods For Impact Control

Previous work in force control has not employed any changes in the force controller structure (variable gains
or controller type). Instead the impact phase is treated as a transient that must be dealt with by the controller
and gains chosen for force control (once contact has been established). At most, modification of the control
strategy has been attempted through active damping and/or passive compliance and damping.

5.2.1 Maximal Active Damping

One proposed method of dealing with the impact problem is to employ maximal damping during the impact
phase [31]. Any force controller may be used; proportional control was used in this reference. The goal of

60
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this strategy is to damp out the oscillations caused by the transition. While this may be successful for soft
environments, stiff environments have oscillations with small amplitudes and high frequencies. This makes
damping difficult for two reasons. First, changes in position of the environmental surface may be smaller than
the resolution of the manipulator’s position measurement devices. In this case, no velocity will be sensed.
Second, for fast oscillations the calculated velocity signal will lag its ideal value and the damping force may
cause instability by being applied out of phase with the true velocity of the surface. This phase lag problem
will be discussed in Section 6.7.1. These problems are compounded by the fact that a stiff environment which
causes them will also cause a larger impact force and need active compensation the most. Thus, this scheme
fails when most needed.

5.2.2 Passive Compliance and Damping

Another method for absorbing the shock of impact is to use passive compliance, either on the end effector
or in the environment. Some researchers have proposed the use of soft force sensors [53, 71]. Another
suggests the use of compliant ‘skin’ for the force sensor [1]. These methods appear to provide stable impact
in two ways. First, the material used naturally provides passive damping that helps absorb some of the energy
of impact, without the resolution or time lag problems of active damping. Second, the compliance of the
material lessens the effective stiffness of the system. Following from the argument of the last paragraph, this
lessening of the stiffness helps active damping work. Because the end effector remains in contact with the
environment over larger ranges of displacements for the same experienced force, the displacement will not
be below the resolution of the arm’s position measurement devices. Thus a velocity may be determined and
active damping employed.

There are problems with passive compliance. First, it may not be modified without physical replacement
of the material. Second, it limits the effective stiffness of the manipulator during position control. Third, it
eliminates precise knowledge of the position of the environment. And fourth, it limits the forces that may be
applied — beyond a certain range of operation the compliant material is not linear and is prone to physical
failure.

5.2.3 Integral Explicit Force Control

As was discussed in Chapter 3, integral force control acts as a low pass filter. Thus, for impact transients, the
high frequency components might be filtered effectively. For impacts with low energy or with an inelastic
environment this may be sufficient. Otherwise, bouncing may occur for high energy impacts or stiff envi-
ronments. Results consistent with this analysis have been reported [74]. However, the conclusion presented
in this reference is that integral control (with damping) is best for impact. This contradicts the experimental
results obtained with the DD Arm II and reported in Chapter 6. There, integral control is shown to be very
oscillatory (at best) during impacts. This is because of the nonlinearity introduced by loss of contact with the
surface. This nonlinearity makes the system model invalid and the stability predictions false for impacts. The
result is integrator windup and severe hopping on the surface.

5.2.4 Impedance Control and Proportional Explicit Force Control

As was described in the previous chapter impedance control against a stiff environment is equivalent to
explicit force control with proportional gain. This type of scheme has been tried by many researchers [23,
27, 31, 73, 1]. However, the proportional gain in these implementations is not tuned for the best impact
response. For explicit force controllers the gain is tuned for optimal command following once contact has
been established. For impedance schemes, the proportional gain is chosen to obtain the desired inertia for
free space motion or force exertion, but not impact. These implementations place the poles well off the real
axis in Figure 3.2. Thus the resultant system is oscillatory and bouncing will occur after impact. This is
consistent with simulation and experimental results [14, 1]. A solution to this problem is to use a different
proportional gain for the impact phase. This will be discussed in the next section.
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Figure 5.1: Root locus for the second order model under proportional gain explicit force control.

5.3 Impact Control

Impact control is best introduced in a discussion that involves a simplified system without sensor dynamics.
This is equivalent to removing the sensor poles from the model developed in Chapter 2. After the initial
discussion without sensor dynamics, the full fourth order model will be used as the plant of the impact
controller. All model parameter values for the analyses are from Chapter 2.

5.3.1 Impact Control Without Sensor Dynamics

The model of the arm / environment plant that neglects sensor dynamics was developed in Section 2.4.
The block diagram of the plant is shown in Figure 2.9 and the corresponding transfer function is given by
Equation (2.18). For a proportional gain explicit force controller with this plant, the root locus is shown in
Figure 5.1. (Comparing this locus with that of Figure 3.2 shows the effect of ignoring the sensor poles.) If the
proportional gain is made negative, the resultant root locus is the complement of the previous one, as shown
in Figure 5.2. It can be seen that for very small and very large negative gains, the poles are in the left half
plane and the system is stable. The case of very large gains will be ignored, since the model will surely be
invalid under this extreme due to nonlinearities and modelling errors. However, for small negative gains the
model is valid and the system is stable. Further, the roots move to the real axis, eliminating any oscillatory
behavior. Figure 5.3 shows an enlargement of this part of the locus. The root locus crosses into the right half
plane forKfp < �1. This is consistent with the analysis of proportional force control in Section 3.2.2. In that
section it was shown that for a proportional gain explicit force controller, elimination of feedforward signal
and inclusion of a reaction force feedback compensation signal provides an equivalent controller with gain
K 0

fp = Kfp � 1. Thus, the root locus may be expressed in terms ofK 0

fp as in Figure 5.4. Observing this
root locus it is immediately apparent that the most stable gain is the one that places the two poles at the point
where the roots leave the real axis. Ignoring the sensor dynamics, an approximate value of this gain may
easily be determined. Using the notation of Section 2.5 and the proportional force controller of Figure 3.5
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Figure 5.2: Root locus for the second order model under negative proportional gain explicit force control.
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Figure 5.3: Root locus for the second order model under negative proportional gain explicit force control for
Kfp from 0 to -1 in steps of 0.0001 . The double root occurs forKfp � �0:9985 .



CHAPTER 5. IMPACT CONTROL 64

-400

-300

-200

-100

0

100

200

300

400

-200 -150 -100 -50 0 50

real

im
ag

in
ar

y

Figure 5.4: Root locus for the second order model forK 0

fp = Kfp � 1. The double root occurs forK 0

fp �
1:5� 10�3 .

the transfer function of this system is:
Fm
F

=
K 0

fAE

1 +K 0

fAE
(5.1)

which has the characteristic equation:

(mr +K 0

fme)s
2 + (Kv +K 0

f ce)s+K 0

fke = 0 (5.2)

The roots of this system are at:

s =
�(Kv +K 0

f ce)�
q
(Kv +K 0

fce)
2 � 4(mr +K 0

fme)K 0

fke

2(mr +K 0

fme)
(5.3)

The system is critically damped when the argument of the radical is zero. This criterion yields a second order
equation inK 0

f :
(c2e � 4meke)K

02
f + (2ceKv � 4mrke)K

0

f +K2
v (5.4)

which has the roots:

K 0

f =
(4mrke � 2ceKv)�

p
(4mrke � 2ceKv)2 � 4(c2e � 4meke)K2

v

2(c2e � 4meke)
(5.5)

=
(4mrke � 2ceKv)� 4

p
m2
rk

2
e �mrkeceKv +mekeK2

v

2(c2e � 4meke)
(5.6)

�
(4mrke � 2ceKv)� 4mrke

�8meke
(5.7)

�
ceKv

4meke
(5.8)
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using the previously verified assumption of largeke, and considering only the positive root. Thus, the double
root of the characteristic equation occurs for quite a small value of the proportional gain. There are three
equivalent ways to view this result:

Proportional force control with reaction force compensation. This is the controller in Figure 3.6. In
this case, the controller does not utilize the force error signal sinceK 0

f � 0. However, the reaction force of
the impact is directly negated by a feedback signal. Viewed this way, the impact controller does not bounce
because the oscillations in the commanded force and those in the experienced force are equal and opposite.
Thus the surface is at a node of two interfering pressure waves. No net force means no net acceleration. Any
initial oscillation is damped out by natural and active damping.

Proportional force control with negative gain and a feedforward signal. This is the controller in Fig-
ure 3.5. While this controller looks different than above, it has been shown in Section 3.2.2 that it is equivalent
to proportional force control with reaction force compensation. In this case the controller multiplies the force
error byKf = K 0

f � 1 � �1. There is also a feedforward signal of the commanded force.

Second order impedance controller with large target mass. As discussed in Chapter 4, a second order
impedance controller is equivalent to a explicit force controller when in contact with a stiff environment.
Second order impedance controllers employ a proportional gain,�M�1, where� is the arm mass, and
M is the desired mass. Viewed in this way, the impact controller matches the apparent mass of the arm
to the stiffness and damping of the environment such that the resultant system is critically damped. More
imprecisely, it can be said that the arm is made to appear so massive that it can’t bounce.

Finally, it is worthwhile to look at the Bode plots for this system in Figure 5.5. The negative proportional
gain, or the reaction force feedback compensation (depending on the representation) causes the system re-
sponse to be greatly out of phase with the disturbance. At the resonance frequency of� 90 rad/sec, this phase
difference is� 140�. Thus, the disturbance force and the response to it destructively interfere, and cancel the
force oscillations due to impact.

5.3.2 Impact Control With Sensor Dynamics

Including the sensor dynamics may change the above analysis somewhat by introducing an additional set of
poles. Obviously, if the sensor poles are far from the environmental poles they will have little effect, and the
above results will remain the same. However, the fourth order model that was previously developed has one
pole relatively close to the environmental poles and zeros. The effect on the root locus of�Kfp is shown in
Figure 5.6. The major difference introduced by the sensor pole is that the environmental poles never become
purely real. However, they do move closer to the real axis, and achieve their minimum imaginary parts for
values ofKfp near negative one (Kfp � �0:8). Figure 5.7 shows the locus for�1 � Kfp � 0. Also, the
sensor pole moves to the right on the real axis and passes the environmental pole pair. Thus, for gains close to
negative one, this pole act as a lowpass filter, eliminating oscillations. For completeness the entire root locus
for �1 � Kfp <1 or 0 � K 0

fp <1 is shown in Figure 5.8.

5.4 Conclusion

This chapter has presented a new impact control strategy based on a proportional gain explicit force controller
with a feedforward signal and negative gains. It has been shown previously and in this chapter that this
controller is equivalent to second order impedance control with a large target mass. It is readily apparent that
this impact control method can not be used for tracking input force commands since the input force command
is largely ignored. However, it still provides an excellent method of maintaining stability and contact with
the environment during the transition from motion through free space to contact with the environment. Once
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Figure 5.5: Bode plots for the second order system under negative proportional gain explicit force control.
The phase at the resonance peak is approximately140�. Thus, the force response of the system is out of
phase with the disturbance from the environment, causing cancellation.
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Figure 5.6: Root locus for the fourth order model under negative proportional gain explicit force control.
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Figure 5.7: Enlargement of root locus in Figure 5.6 withKfp values from -1 to 0 in steps of 0.01 . The gain
for closest approach of the locus to the real axis isKfp � �0:8 .
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Figure 5.8: Root locus for the fourth order model for�1 � Kfp <1 or 0 � K 0

fp <1.

contact has been established and the energy of impact has been dissipated, one of the previously discussed
force control strategies may be employed.



Chapter 6

Experimental Results

6.1 Introduction

This chapter presents the data obtained from the implementation of the explicit force, impedance, and impact
control strategies discussed previously. All experiments were performed with the CMU DD Arm II and
implemented under the Chimera II real time operating sytem [57] with the computer architecture described in
Appendix B. This experimental review of force control methodologies is unique in its breadth — never has
such a complete spectrum of strategies been implemented on the same system. The commonality amongst
the experiments has permitted the ability to objectively compare and contrast these strategies, and draw
conclusions about the efficacy of each. The results support the previous analysis and show: the superiority of
integral force control for force trajectory tracking, the near equivalence of second order impedance control
and proportional gain explicit force control, and the effectiveness and stability of the proposed impact control
strategy.

First in this chapter, data collected from explicit force control strategies is presented. These include
proportional control with feedforward, integral control, and proportional–derivative control. Then, the results
of second order impedance control with and without dynamics compensation is shown. Impact control, in
its two manifestations of proportional explicit force control and impedance control, was also implemented
and compared. All of these tests were conducted using the environment modelled in Chapter 2. The results
compare excellently with the analysis of Chapters 3, 4, and 5. Finally, results are presented from tests
conducted with the best of these controllers on a very stiff environment.

6.2 Explicit Force Control

This section presents the results of implementing the explicit force control schemes presented in Chapter 3.
All of these schemes were implemented in a hybrid control framework in which the force was controlled in
one direction (world framez axis), and all other directions were position controlled. To be consistent with
the arm / sensor / environmental model developed, active damping was provided (Kv = 10) in the force
controlled direction. The control rate was 300 Hz. The chosen reference force trajectory has steady state,
step, and ramp components and is shown as a dashed curve in all of the graphs. The measured force response
of the system is shown as a solid curve.

6.2.1 Proportional Gain with Feedforward Control

The first controller to be discussed is proportional gain force control with the reference force fedforward. The
exact form of the control law used is:

� = JT [ fc +Kfp(fc � fm) � Kv _xm] + g: (6.1)

69
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Figures 6.1 (a) through (h) show the response of this controller to the commanded force trajectory. There are
several things to note about the response profiles to variations in the proportional gain. First, as predicted by
the model, the system exhibits the characteristics of a Type 0 system: finite steady state error for a step input
and unbounded error for a ramp input. Second, for an increase in position gain, the steady state error reduces,
but at the cost of increasingly larger overshoot. As correctly predicted by the root locus of developed system
model in Figure 3.3, this control scheme causes instability atKfp � 1. Also, the fact that the environmental
poles are always off the real axis can be seen in the steady state oscillations that occur at the system’s natural
frequency (� 15 Hz), particularly after the step input. Finally, it can be seen that negative proportional gains
are increasingly more stable, but the response of the system approaches zero asKfp ! �1.

One possible improvement to the performance to steady state error of this controller is to increase the
feedforward signal by a factor that would make that error small for the open loop case (Kfp = 0). Fig-
ure 6.1 (d) shows that a feedforward term of approximately1:4 fc would be necessary. This, however, would
not eliminate the oscillations that are present, especially after the step input.

6.2.2 Integral Gain Control

Integral explicit force control was implemented with the following form of control law:

� = JT
�
Kfi

Z
(fc � fm)dt � Kv _xm

�
+ g: (6.2)

Figures 6.2 (a) through (e) show the response of this controller to the commanded force trajectory. The most
notable aspect of this controller is the dominance of the integrator pole on the real axis for low gains. This
causes the system to be Type 1, as is apparent from the zero steady state error to the step input and constant
error to the ramp input. As predicted, this pole acts as a low pass filter until it moves past the environment
poles. This happens gradually as the gain increases pastKfi � 10 as shown in the root locus diagram of
Figure 3.8. Also predicted by that model is that the system becomes unstable for gains nearKfi = 30. The
real system is not unstable untilKfi reaches the upper thirties, which implies a small modelling error. Also,
the model previously presented does not explain the nonlinear response seen forKfi = 37:5. For a linear
system, the envelopes of the two dominant oscillations would be the same, which is obviously not the case.
This limitation of the model is not significant, since it does not manifest itself within the desirable operating
range of this controller.

6.2.3 PD Control

Proportional / Derivative control was also implemented. Simple differencing of the measured force signal to
obtain the derivative was unsuccessful because of the extremely noisy nature of the force signal. Therefore,
the force feedback signal was lowpass filtered by using the transfer functionL = a=(s+ a) in the feedback
path in Figure 3.1. The reference signal is not filtered. Therefore, the implemented control law in the Laplace
domain is:

�(s) = JT
�
Fc(s) + [Kfp +Kfds]

�
Fc(s)�

�
a

s+ a

�
Fm(s)

�
+ Kvs X(s)

�
+ g: (6.3)

Figure 6.3 shows the response of the system, as well as the reference force and filtered force (long dash
curve), forKfp = 0:5, Kfd = 0:01, anda = 10. The results are not much better than for proportional gain
alone. As will be described below, improvements in the performance of this controller can not be made by
varying the gains given here.

First, increasing the derivative gain does not improve the response of the system because the amplified
low frequency noise can still drive the system unstable. While Figure 6.3 seems to show a fairly smooth
filtered force signal, Figure 6.4 shows a closer view of a section of the curve. Obviously, much of the noise
has been removed, but some still remains. With a large enough gain the noise will dominate. Moving the
filter pole to the right (a < 10) will eliminate this noise, but it introduces a more serious problem of lag.
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(a)Kfp = �0:75 (b)Kfp = �0:5

(c)Kfp = �0:25 (d)Kfp = 0

(e)Kfp = 0:25 (f) Kfp = 0:5
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Figure 6.1: Experimental data of proportional gain explicit force control with feedforward. The proportional
gain varies from -0.75 to 1.
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(g)Kfp = 0:75 (h)Kfp = 1
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Figure 6.1: (continued) Experimental data of proportional gain explicit force control with feedforward. The
proportional gain varies from -0.75 to 1.

Figure 6.5 shows that the calculated derivative (solid curve) appears accurate. (The dotted curve is the
measured force.) However, it is apparent from this figure and Figure 6.3 that there is lag introduced by the
filtering process. This lag becomes extremely important when it is a significant portion of the period of
oscillation of the system. Figure 6.6 shows the original force signal (solid), the filtered force signal (short
dash), and the derivative of the filtered signal (long dash). For this oscillation frequency, the filtering process
causes the filtered force to lag the measured force by one quarter cycle. This makes the force signal180� out
of phase with the ideal derivative signal. Thus, the proportional gain act as a destabilizing negative derivative
gain. Further, the derivative of the filtered signal leads it by one quarter cycle. Thus, the derivative is in phase
with the originally measured force and the derivative gain acts as a proportional gain. Increasing the derivative
gain causes greater oscillations exactly when the effective damping is being reduced by the proportional gain.
This obviously will cause the system to go unstable.

It can be concluded from this discussion than the filter pole should be significantly larger than the natural
frequency of the system, However, it also must be small enough to effectively filter the noise of the force
sensor. These two criteria could not be met with our system. To be fair, most systems will never meet
this criteria. Force controlled systems are most challenged by stiff environments that have high natural
frequencies. It is unlikely that a sensor can be built that has noise only at frequencies much greater than the
natural frequencies of these environments.

One solution, however, is to use a soft force sensor or compliant covering on the sensor. The compliance
acts as a lowpass filter with no time delay. In this way, the derivative of the force signal may be used under the
condition that the time necessary to calculate it is not significant. In this case, without a noisy force signal,
simple differencing of the current and most recent force samples will usually suffice. Thus, all that is required
is that the force sampling frequency is not of the same order of magnitude as the natural frequency of the
system. Successful PD force control with a soft force sensor has been reported elsewhere [71].
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(a)Kfi = 7:5 (b)Kfi = 15

(c)Kfi = 22:5 (d)Kfi = 30

(e)Kfi = 37:5
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Figure 6.2: Experimental data of integral gain explicit force control feedforward. The integral gain varies
from 7.5 to 37.5.



CHAPTER 6. EXPERIMENTAL RESULTS 74

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5-5

0

5

10

15

20

25

30

35

40

Time(seconds)

N
ew

to
ns

MezForc_wd[2]
(-1.0)*RefForc[2]
Filter_Forc[2]

Figure 6.3: Experimental data from PD control withKfp = 0:5 andKfd = 0:01
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Figure 6.4: Filtered and unfiltered force signals for PD control.
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Figure 6.5: Calculated force derivative and measured force signal used in PD control.

4.44 4.46 4.48 4.5 4.52 4.54 4.56 4.58 4.6 4.62 4.64 4.66 4.68 4.7 4.72-.25

-.2

-.15

-.1

-0.05

0

0.05

.1

.15

.2

.25

.3

.35

Time(seconds)

(MezForc_wd[2]-26.1)
((Filter_Forc[2]-26.14)*5)
(Fdot[2]*.1)

Figure 6.6: The lag of the filtered force causes the force derivative to be in phase with the measured force.



CHAPTER 6. EXPERIMENTAL RESULTS 76

6.2.4 Second Order Low Pass Filter Control

As discussed in Section 3.3.1, a second order low pass filter controller has been implemented. The following
control law was used:

�(s) = JT
�

Kfp

s(s+ a)
(Fc(s)� Fm(s)) + Kvs X(s)

�
+ g: (6.4)

Figures 6.7 show the response of this system for three distinct regions of operation: filter poles meeting on
the real axis to the right of, near, and to the left of the environment poles. This behavior was previously shown
if Figure 3.17.

Figures 6.7 (a) through (c) show the response fora = 15 and increasing gainKfp. Referring to the root
locus in Figure 3.17, it can be see that the rightmost pole dominates in (a), until the two poles on the real axis
meet in (b), and then leave the real axis in (c). For the small gain case, the dominant pole acts much like the
single pole of the integral controller presented previously. Becausea is small, the filter poles meet to the right
of the environmental poles and dominate the response for low frequencies. Notice that the oscillations present
in (c) are not close to the natural frequency of the environment, as was true with the previous controller results
presented.

Figures 6.7 (d) through (f) show the response fora = 45 and increasing gainKfp. Again, the three graphs
refer to the poles spread on the real axis (d), together on the real axis (e), and off the real axis (f). Again,
the one filter pole dominates for low gains, making the response look like integral control. The response
continues to look like integral control as the poles meet in the vicinity of the environmental poles (e). The
response in Figure 6.7 (e) was the best obtained with this controller. In (f) the poles have again moved off the
real axis, as indicated by the oscillations.

Finally, Figures 6.7 (g) through (i) show the response fora = 180 and increasing gainKfp. Again, the
three graphs refer to the poles spread on the real axis (g), together on the real axis (h), and off the real axis (i).
Again, the first two graphs look much like integral control. However, this time the third graph also looks like
integral force control with gain that is too high. This is intuitively correct since the meeting point of the filter
poles for such a high value ofa is to the left of the environment poles. Thus, the right filter pole acts like the
integral control pole until it is moves far to the left of the environment poles, at which point its influence is
negligible. The influence of the second filter pole remains negligible throughout.

Thus, it can be concluded that this control scheme is only marginally better than integral control. While
the double pole on the real axis promises to be a better low pass filter, its location must still be close to
the real axis projection of the environmental poles to minimize lag. This placement reduces its ability to
better suppress the oscillation of the system. Further, this controller is much more difficult to tune since
it requires the adjustment of two parameters instead of one. For these reasons it is not preferable to pure
integral control. However, this implementation does successfully demonstrate that position-base explicit
force control, as discussed in Section 3.3.1, is stable and useful.

6.3 Impedance Control

This section presents the results of implementing the second order impedance control schemes presented in
Chapter 4. The major schemes discussed there were impedance control with and without dynamics com-
pensation. To be consistent with the arm / sensor / environmental model developed, active damping was
provided (Kv = 10). The control rate was 300 Hz when not providing dynamics compensation, and 250 Hz
when dynamics compensation was included. The position reference trajectories are chosen such that given
the stiffness of the controller, the trajectory should provide the same force profile as commanded for the ex-
plicit force controllers. This allows direct comparison with those controllers. As will become apparent, both
forms of impedance control (with and without dynamics compensation) respond the same as proportional
gain explicit force control with feedforward.
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(a)a = 15; Kfp = 33

(b) a = 15; Kfp = 100

(c) a = 15; Kfp = 300
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Figure 6.7: Experimental data of second order low pass force controller fora = 15,Kfp varied.
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(d) a = 45; Kfp = 200

(e)a = 45; Kfp = 600

(f) a = 45; Kfp = 1800

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5-5

0

5

10

15

20

25

30

35

40

45

Time(seconds)

N
ew

to
ns

MezForc_wd[2]
((0-1)*RefForc[2])

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5-5

0

5

10

15

20

25

30

35

40

45

Time(seconds)

N
ew

to
ns

MezForc_wd[2]
((0-1)*RefForc[2])

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5-5

0

5

10

15

20

25

30

35

40

45

Time(seconds)

N
ew

to
ns

MezForc_wd[2]
((0-1)*RefForc[2])

Figure 6.7: (continued) Experimental data of second order low pass force controller fora = 45,Kfp varied.
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(g) a = 180; Kfp = 1200

(h) a = 180; Kfp = 3600

(i) a = 180; Kfp = 7200
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Figure 6.7: (continued) Experimental data of second order low pass force controller fora = 180,Kfp varied.
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6.3.1 Impedance Control Without Dynamics Compensation

When in contact with a stiff environment, the manipulator will not move very much or very quickly in the
direction normal to the environment. As was shown in Section 4.5, this enables a steady state approximation
that eliminates the need to calculate the inverse dynamics and the inverse Jacobian. The control law has the
following form of Equation (4.40), which is repeated here:

�A = JT�M�1 [(C( _xc � _xm) +K(xc � xm))� fm] + JT fm + g: (6.5)

For these experimentsK = 150 andC = 10. As discussed in Sections 4.6 and 3.2.2, the mass ratio,�M�1,
is equivalent to the proportional force gain plus one:

�M�1 = Kfp + 1 (6.6)

Thus, for this controller the mass ratio is chosen to be diagonal in the desired frame and its components
(�=m) set to correspond to the proportional force gains chosen previously. This allows a direct comparison
of impedance and force control schemes.

Figures 6.8 (a) through (g) show the response of this impedance controller, and the commanded position
trajectory multiplied by the active stiffness in that direction. As is readily apparent, the response of this
controller is essentially equivalent that of the proportional gain controller shown in Figures 6.1. This confirms
the previous theoretical assertion thatsecond order impedance control against a stiff environment is equivalent
to explicit force control with proportional gain and feedforward compensation.

6.3.2 Impedance Control With Dynamics Compensation

Second order impedance control can also be implemented with dynamics compensation as shown in Equa-
tion (4.32), which is repeated here.

� = DJ�1M�1 (C( _xc � _xm) + K(xc � xm)� fm) � J�1 _J _� + h + g + JT fm: (6.7)

As can be seen in Equation (4.33),
DJ�1M�1 = JT�M�1 (6.8)

Thus, the mass ratio,�M�1 can be thought of a proportional force gain. However, it can be seen from
Equations (4.17) and (4.18) that onlyM can be specified in this scheme.

UsuallyM is chosen to be diagonal in the task frame along withK andC. As described in Section 4.4.3,
when operating in free space (fm = 0) a diagonalM acts as a simple scaling factor toK andC, thereby
preventing coupled motion. IfM were nondiagonal, its product with diagonalK andC would be nondiag-
onal, and coupled motion would result. Further,K andC are usually chosen to be diagonal in some task
frame which is aligned with environment to be contacted. In this way, the manipulator may be made stiff
tangentially to a surface, but soft normal to it. (The velocity gains are usually chosen for critical damping.)

However, when in contact with the environment (fm 6= 0), the ratio of the inertias,�M�1, acts as a
proportional force gain which is not diagonal in general, because� is not diagonal in general. Therefore, it is
necessary to determine the effective value of the mass ratio (force gain). This requires finding the dominant
element of� for the direction in which the environment is contacted.

Finding the dominant component of the inertia matrix is equivalent to finding the effective mass in the
direction of concern. Since it is the force which is being controlled, this can only be done by determining the
resultant acceleration from an applied force:

�x = ��1f (6.9)
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(a)�=m = 0:25 (b) �=m = 0:5

(c) �=m = 0:75 (d) �=m = 1

(e)�=m = 1:25 (f) �=m = 1:5
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Figure 6.8: Experimental data of impedance control without dynamics compensation. The mass ratio ’gain’
varies from 0.25 to 2.0.
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(g) �=m = 1:75 (h) �=m = 2
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Figure 6.8: (continued) Experimental data of impedance control without dynamics compensation. The mass
ratio ’gain’ varies from 0.25 to 2.0.

The force may be set to be the unit vector in the direction of the surface. For the experiments performed, the
z direction was chosen. The actual values of Equation (6.9) were:

�x =

2
6666666666664

0:070 0 �0:053 0 0 0

0 1:671 0 �9:723 �0:049 0

�0:053 0 0:199 0 0 0

0 �9:723 0 59:9 �1:272 0

0 �0:049 0 �1:272 2:758 0

0 0 0 0 0 3226

3
7777777777775

2
6666666666664

0

0

1

0

0

0

3
7777777777775

(6.10)

It is apparent that for forces applied in the z direction to the arm in this configuration, the dominant accel-
eration is�xz � 0:2m=s

2. Thus, the apparent inverse scalar mass is��1
z � 0:2 kg�1. This implies that the

best scalar approximation of the mass in thez direction is�z � 5 kg. This value may then be thought of as a
scaling factor applied to the variable gain valueM33 in Equation (6.7).

Figures 6.9 show the response of impedance control with dynamics compensation for0:1 �M�1
33 � 0:45.

The other gains wereK = 150 andC = 10. Using the approximation of�z � 5 kg, these gains can be
thought of as0:5 � �zM

�1
33 � 2:25. Thus, a direct comparison can be made between the system response

shown in Figures 6.9 and that shown in Figures 6.8 and Figures 6.1. The responses are essentially the same.
This comparison supports the analysis above. It also, further supports the conclusion thatsecond order
impedance control, with or without dynamics compensation, is essentially equivalent to explicit force control
with proportional gain and feedforward compensation.

6.4 Explicit Force and Impedance Control Conclusions

It is apparent from the results presented thus far that integral explicit force control works best at force tra-
jectory tracking. Also, PD force control works least well and is unstable due to noise and lag. This is in
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Figure 6.9: Experimental data of impedance control with dynamics compensation. The commanded inverse
mass varies from 0.1 to 0.45. This is approximately the same as having a force gain vary from 0.5 to 2.25.
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Figure 6.9: (continued) Experimental data of impedance control with dynamics compensation. The com-
manded inverse mass varies from 0.1 to 0.45. This is approximately the same as having a force gain vary
from 0.5 to 2.25.

direct contradiction to the predictions of other researchers [14]. It is also clear that second order impedance
control and proportional gain explicit force control with feedforward are essentially the same thing. Further,
Impedance Control is more cumbersome to use since it requires position reference instead of force reference.
Note that the reference force is essentially determined by the product ofK(xc � xm), and either quantity
may be varied as long as the product is constant. For the data presented above,K was kept constant at 150.
However, other values were tried and the commanded values ofxc adjusted appropriately with no change
in the results. This strategy is permissible only if the compression of the environment is small, keepingxm
constant. Alternatively, the stiffness of the manipulator must be small in comparison to the environment.
This can easily be seen to be necessary by considering the case where the environment is very soft. The
compression of the environment will be large,xm will approachxc, K(xc � xm) will be reduced, and the
force exerted will diminish.

The use of reference positions by Impedance Control is seen as valuable by some researchers, since
there is no need to switch from position control mode to force control mode. However, as was discussed in
Chapter 5 and as will be seen below, it is useful to have a mode of impact control between motion through free
space and constrained force control. Further, no one set of impedance parameters can give good free space
motion, impact response, and force tracking. Switching the parameter values could be one solution. But even
switching the values will not make second order impedance control the best force controller. Therefore, it
seems that if the controller is to be modified at all, the best possible controller for the situation should be
chosen: position control with dynamics compensation for free space motion, impact control for impacts, and
integral gain explicit force control for force trajectory tracking.

6.5 Impact Control

As discussed in Chapter 5, impact control provides a mode of operation that enables stable transition from
motion through free space to contact with the environment. The proposed method for achieving this is neg-
ative proportional gain force control with feedforward. Again it will be shown how second order impedance
control provides identical results. But first, the results of integral control for impact will be presented.
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Figure 6.10: Experimental data from an impact with integral force control. The integral gain wasKfi = 7:5.

For all of the experiments conducted, the manipulator was accelerated toward the environment and struck
the surface at the same velocity of� 75 cm/s. Although dependent on the controller used, the impact force
spike is� 90 N. The force spike from impact triggers the impact controller by changing the hybrid control
selection switch (SHybrid). A reference force of20 N is then supplied. A damping gain ofKv = 10 is used
throughout to maintain consistency with the system model developed in Chapter 2.

6.5.1 Integral Control

In Section 6.2.2 it was shown that integral gain explicit force control provided excellent force tracking capa-
bility. Also, it has been reported by other researchers that integral control is useful for control of impacts [74].
However, Figure 6.10 shows that integral control is extremely ill suited for stable impacts. After an initial
impact with the environment, the manipulator jumps away and strikes on the environment with a larger force
the second time. For the gain value used,Kfi = 7:5, the system eventually settles to the commanded force.
For larger gains it was not possible to attain stability.

6.5.2 Proportional Gain Control with Feedforward

It was predicted in Chapter 5, that negative proportional gain explicit force control would be stable during
impacts. Figures 6.11 show impacts for�1 � Kfp � 0:75. In Section 6.2.1 it was seen how negative gains
suppressed much of the oscillatory behavior of the response when just tracking a force trajectory. This is
even more true for the impact response. Figures 6.11 (a) and (b) show this suppression of force oscillation
even though velocity oscillations continue. For Figures 6.11 (c) though (h), contact is lost with environment
and growing oscillations and repeated impacts occur.

While the stability of the system is best for negative gains, their are two small drawbacks to their use.
First, the magnitude of the impact is increased slightly as theKfp ! �1. This is only important if the
environment can not withstand any impacts greater than a particular magnitude. Second, the measured force
value after the impact transition will be less and less correct as the gain is reduced. This is also apparent for
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(a)Kfp = �1 (b)Kfp = �0:75

(c)Kfp = �0:5 (d)Kfp = �0:25

(e)Kfp = 0 (f) Kfp = 0:25
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Figure 6.11: Experimental data of proportional gain explicit force control with feedforward during impact.
The proportional gain varies from -1 to 0.75.
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(g)Kfp = 0:5 (h)Kfp = 0:75
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Figure 6.11: (continued) Experimental data of proportional gain explicit force control with feedforward
during impact. The proportional gain varies from -1 to 0.75.

the response curves of Figure 6.1. It implies that another controller must be used after the impact phase is
over. From the previous discussions it is known that integral control is best.

6.5.3 Impedance Control

Second order impedance control without dynamics compensation was tested during impacts. Figures 6.12
show the results for the mass ratio�M�1 = 0:25; 1; 1:75. The results compare favorably to the responses for
proportional force control withKfp = �0:75; 0; 0:75. This is in direct agreement with theory as previously
discussed and once again demonstrates the equivalence of impedance control and proportional gain explicit
force control.

Note that to obtain a consistent velocity during the free motion phase, the position gainK in Equa-
tion (6.5), was varied to keep the product�M�1K constant. The free space position trajectory was not
changed and the resultant velocity of impact was the same for all tests. Also, during and after the impact,
the reference position was set such thatK�x = 20 N. There is, therefore, a discontinuity in the reference
position trajectory. The time for the discontinuity was estimated from previous impact results.

6.5.4 Discussion of Impact Control Results

The previous sections have shown that an equivalent, stable impact response can be achieved from proper
parameter selection for proportional gain explicit force control and impedance control. The appropriate gain
values for this particular system areKfp � �0:75 for the proportional gain or�M�1 � 0:25 for the
impedance control mass ratio. As discussed in Section 3.2.2, these gains are essentially equivalent.

However, gains that are appropriate for impact suppression are not good for force trajectory tracking. It
has been shown that the best force trajectory tracking with these controllers is for drastically different gains:
Kfp � 0:5 or �M�1 � 1:5. Even with these values, the tracking is not close to the performance of integral
gain explicit force control.

Further, the impedance control mass ratio that is best for impact control requires very high values of
stiffness for free space operation. This can be seen directly from Equation (6.5) in which the mass ratio acts
only as a scaling factor to the stiffness and damping whenfm = 0. Thus for�M�1 � 0:25, the stiffnessK
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Figure 6.12: Experimental data of impedance control during impacts for the stated mass ratios.
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Figure 6.13: Experimental data of impact control with transition to integral gain force control. The impact
control phase lasts for 0.15s after the beginning of the impact. This is followed by a period of transition from
impact control to integral gain force control which lasts 0.15s. Beyond 0.3s after impact, integral gain force
control is used.

must be increased by a factor of four to obtain the same free space response. However, this increase in the
stiffness may present a problem when the manipulator is in contact with the environment. As discussed in
Section 6.4, higher stiffness can cause a reduction in the force exerted, resulting in even worse force tracking
performance for this controller.

Thus, it is concluded that the best solution is to use three distinct controllers. Position control with
properly tuned gains should be used for free space motion. Impact control, or proportional gain explicit force
control with negative gain, should be used to suppress oscillations and bouncing during the transient phase of
impact on the environment. And integral gain explicit force control should be used to track forces once stable
contact with the environment has been established.

The transition from position control to impact control is abrupt, and triggered by the impact force spike.
The transition method from impact control to integral force control is less obvious. One method of doing this
is to have a transition period in which the proportional gain and force feedforward of the impact control are
brought to zero, while the integral gain is increased to its best value. Figure 6.13 shows the results of this
strategy. The impact control phase lasts for 0.15s (about the width of the impact spike) after the beginning of
the impact. This is followed by a period of transition from impact control to integral gain force control which
lasts 0.15s. During the transition phaseKfp is varied linearly from -0.75 to 0;Kff , the feedforward gain, is
varied linearly from 1 to 0; andKfi is varied linearly from 0 to 15. After, this transition period, integral force
control is continued with the gain at 15. As can be seen, this simple strategy provides stability through the
impact period and excellent position and force control before and after the impact.
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Figure 6.14: Experimental data of proportional gain explicit force control with feedforward against steel
environment (z direction).

6.6 Results with a Stiff Steel Environment

All of the results presented previously were obtained with the environment modelled in Chapter 2. To further
test the controllers discussed, a very rigid steel pedestal was used as the environment. This pedestal is made
from one inch thick steel: two 1 foot square plates at both ends of a cylinder 34 inches long and 8 inches in
diameter. The bottom plate is bolted to a concrete floor. Another piece of steel is bolted to the top plate. It
consists of two 6 by 1/4 inch steel plates joined at right angles. (This is commonly called ‘angle iron’.) The
angle iron is 1 foot long and provides a vertical surface which may be pressed or impacted upon.

Two points on this pedestal were used for force trajectory and impact experiments. The first is on the
top surface (z direction), directly above the wall of the supporting column. It is the most rigid point on the
structure. (This was independently verified by the sound emitted from locations struck with a hammer; the
high frequency spots are the stiffest.) The pedestal was mounted such that this spot was very close to the
Cartesian position at which all previous experiments were performed. The second spot on the pedestal used
for experiments was on the face of the angle iron (x direction). This was much less stiff but still considerably
more stiff than the previously modelled environment. Its reduction in stiffness from the top surface is due to
flexion of the column and weaknesses in the bolted connections.

The controllers tested were proportional gain force control with feedforward and integral force control.
The proportional gain controller was also used with negative gains to test impact control. Impedance control
was not tested because of its strong similarity to proportional gain control.

6.6.1 Explicit Force Control on the Steel Environment

First proportional gain control was tried at the two test points on the pedestal. Figures 6.14 show the response
for the highest proportional gains used in thez direction. For this stiff direction, the gain is stable even
for Kfp = 2. Figures 6.15 show the response for the highest proportional gains used in thex direction. It is
apparent that general behavior of the controller is the same as before for the modelled environment. However,
it can also be seen that a stiffer environment permits higher proportional force gains.

Next integral gain control was tried at the two test points on the pedestal. Figures 6.16 show the response
for the highest integral gains used in thez direction. Figures 6.17 show the response for the highest integral
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Figure 6.15: Experimental data of proportional gain explicit force control with feedforward against steel
environment (x direction).
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Figure 6.16: Experimental data of integral gain explicit force control on the steel environment (z direction).
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Figure 6.17: Experimental data of integral gain explicit force control on the steel environment (x direction).

gains used in thex direction. For both directions, the gain is still stable forKfi = 50. It is apparent that
general behavior of this controller is also the same as before with the modelled environment. However, it can
also be seen that a stiffer environment again permits higher gains.

The major conclusion to draw from this data is that all of the discussions and results from the analysis of
the modelled system carry over to a very stiff environment. In this case it can be assumed that most of the
dynamics of the system are within the manipulator and the sensor. Therefore, an infinitely stiff environment
(if one could be found) would not provide much different results.

6.6.2 Impact Control on the Steel Environment

To further test the impact controller developed, impacts were made at the two test locations on the steel
pedestal. The impact velocity was� 40 cm/s. It proved impossible to prevent bouncing during these tests —
at least one bounce would always occur.

Figures 6.18 show the response of az direction impact on the pedestal. The gains compared are for the
open loop case ofKfp = 0, and the best impact response atKfp = �0:85. In the case (a), the manipulator
bounces several times before coming to rest on the surface. In the case (b), the arm bounces, but returns
slowly and softly to the surface, reestablishing contact in less than one second.

Figures 6.18 show the response of anx direction impact on the angle iron face. The cases compared are
for a poor impact response with a positive gain ofKfp = 0:75, and the best impact response atKfp = �0:75.
Even though both results are oscillatory, it is obvious that the negative gain impact produces peaks that are
less numerous and smaller in magnitude.

Two changes to the system were tried to improve the response. First, the impacts were tried with and
without the brass weight on the end effector. Without the brass weight, it is guaranteed that contact will occur
at only one point. Otherwise it is possible that one edge of the brass weight will strike the steel surface first,
causing a torque that will cause an impact of the opposite edge to immediately follow. This type of multiple
contact can obscure the resultant data. However, removing the weight produced only minor changes in the
response.

The second change was to eliminate damping from the force control law by havingKv = 0 after impact.
This measure eliminates any side effects of the velocity signal lag as discussed in Section 6.7.1. No difference
in the response was observed. The presented results have no damping after impact.
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Figure 6.18: Impact control on the steel pedestal in thez direction: comparison ofKfp = 0 (open loop) and
Kfp = �0:85.

(a)Kfp = 0:75 (b)Kfp = �0:75
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Figure 6.19: Impact control on the steel pedestal in thex direction withKfp = 0:75 and�0:75.
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6.6.3 Discussion of Results with the Steel Environment

It is apparent from both the force control and impact results that contact with a very stiff environment does
not implicitly cause instability for these control schemes. In fact, the explicit force controllers tend to stay
stable for higher gain values. However, the very stiff environment does make the transition from free space
motion to contact more difficult. It has been shown that the proposed impact control method improves
the transient response. However, this type of impact tends to excite higher frequency components of the
system which are not modelled and most likely cannot be controlled. It appears that a better impact response
for such stiff environments cannot be obtained without the use of passive energy absorbing components
such as a compliant ‘skin’ between the end effector and the environment. This would effectively reduce the
environmental stiffness to that used in the earlier model, making impact without bouncing possible again.

6.7 Implementation Considerations

When implementing the above schemes, there were several practical considerations to be addressed. Some
of these can effect the stability or range of operation of a particular controller. Force filtering, because of its
close relation to PD force control, has already been discussed in Section 6.2.3. Discussed in this section are
other issues such as velocity signal calculation, sampling rates, hybrid control switching, etc.

6.7.1 The Velocity Signal

The angular velocity signal for the CMU DD Arm II is obtained by differencing and averaging the angular
position signal. The position signal is a 16 bit absolute position value obtained from pancake resolvers located
at each joint. Every control cycle, the position is obtained and placed in a stack. A velocity signal averaged
over the pastn control cycles can be obtained by simple differencing of the current position with the onen
cycles before it:

vavg =
1

n
[v(t) + v(t� T ) + � � �+ v(t� nT )]

=
1

n

�
p(t)� p(t� nT )

T
+
p(t� T )� p(t� 2T )

T
+ � � �+

p(t� (n� 1)T )� p(t� nT )

T

�

=
1

nT
[p(t)� p(nT )] (6.11)

Good results are obtained for the CMU DD Arm II with3 � n � 10. The lower number provides a velocity
signal with less lag and more noise, and the higher number just the opposite. For free space motion with the
CMU DD Arm II , the natural frequency of the system is determined by the stiffness provided by the position
gain. This frequency is usually low enough that the velocity signal lag is not significant. However, when
the arm is in contact with the environment, the natural frequency of the system is largely determined by the
environmental stiffness. This frequency is much higher than in the free space motion case. Higher frequency
also means a shorter period. Therefore, the velocity signal lag can become a major portion of the oscillation
cycle. Just as with the force derivative delay discussed previously in Section 6.2.3, the velocity signal delay
can cause it to act as a position signal. In this case, the velocity gain will add to the already large stiffness of
the system, driving it toward instability.

For the tests conducted previously in this chapter, a velocity averaging factor ofn = 3 was used for joints
4, 5, and 6. A factor ofn = 5 was used for joints 1, 2, and 3. As can be seen from some of the impact test
graphs, the velocity signal has some noise, especially for free space motion before impact. For this reason, a
factor ofn = 10 for joints 1, 2, and 3 is usually used when free space motion is to be performed exclusively.
The valuen = 3 for the last three joints tends to be sufficient at all times.

Since the Cartesian velocity signal contains components from all of the joint signals, the delay will be
between three and five cycles. For the control rate of 300 Hz, the delay is between 0.01 and 0.016 seconds.
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Figure 6.20: Velocity phase lag due to averaging. It can be seen that the velocity signal lags its ideal value
by about 0.16s, or 45 degrees.

Figure 6.20 shows the velocity and position signals during proportional gain explicit force control (Kfp =
0:75), after a step input. The delay of the velocity signal is about 0.01 seconds, or45� for the 12 Hz oscillation.
This also explains why an averaging factor ofn = 10 is unacceptable. This delay would put the velocity signal
in phase with the position signal, and the velocity gain would increase the stiffness of the system instead of
the damping.

Note that the use of active damping when the manipulator is in contact with the environment must be
used with caution. The time delay from the velocity calculation/filtering is always present. If this delay is a
significant part of the natural frequency of the system, then the velocity signal will act as a position signal
and add to instability. Further, stiffer environments have higher oscillation frequencies, making the velocity
signal least reliable when it would be most useful. Therefore, the damping intrinsic to impedance control,
and sometimes used in explicit force control, is always suspect.

Finally, it is worth mentioning that these problems with delay only apply to active damping. Passive
damping, as supplied by some soft sensors or end effector covers, will provide damping without time delay.
These devices also lower the natural frequency of the system, making active damping possible.

6.7.2 The Force Signal

A LORD 15-50 force sensor was used in all of the experiments. In its factory configuration, it supplies eight
strain gauge values at 400 Hz. However, the controllers used usually ran at only 300 Hz. Therefore, one of
every four sets of data was ignored. Also, the data set could be as old as one 400 Hz cycle, or 2.5 ms. Since
the force oscillations were an order of magnitude slower than the control rate, this asynchronous sampling
has no appreciable effect on the stability of the controllers.

The noise in the force signal has several contributors: intrinsic noise, kinematic fluctuations, kinematic
inaccuracies, and inertial effects. Intrinsic noise is present in the analog and digital electronics of the sensor
system. Kinematic fluctuations are caused by noise in the position signal which causes the world frame
transformation to change, and therefore the calculated value of the force in that frame. Compensation for
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the weight of the end effector is also position dependent and subject to this noise. Further, the end effector
weight compensation is subject to kinematic inaccuracies which can cause the calculated direction of ‘down’
to be different from the direction of the measured gravitational force. Finally, the inertial effects cause the
measured force not to equal the applied force unless the sensor is motionless. All of these factors contribute
to a noise amplitude of� 0:1 Newtons. This is an order of magnitude above the sensor resolution.

6.7.3 Hybrid Control Switching

With or without impact control, it is necessary to switch from position to force control when using a hybrid
control framework. One way to achieve this is to switch to force control when a measured force threshold is
exceeded. To prevent force signal noise from causing the switch, a value of 2 N was used for the threshold
value for switchingto force control. Also, since the noise still exists while in force control mode, the measured
force may drop below 2 N inadvertently. Thus, a lower threshold value of 1 N was chosen for switchingfrom
force control.

The switching strategy was implemented in a process that ran parallel to the control process at 150 Hz.
This process was part of the joystick controller, and could therefore dictate whether the joystick values were
interpreted as commanded velocity (free space motion), or commanded force (constrained motion). This
separation of the switching procedure from the control process had one minor effect. It can be seen in some
of the impact control graphs presented earlier that the switch does not occur at the exact moment the force
goes above the threshold. This has no discernible effect on the results obtained.

Another aspect of the switching strategy is that it could be made unidirectional — only switching to
force control was permitted. This is often evident in the force control response graphs presented. When
unidirectional, force control will remain in effect even if the measured force is reduced below the threshold,
as when the manipulator leaves the surface. The behavior of the controller for this case of contact loss can be
quite interesting and illustrative. However, experience showed that some of the controllers tested were sure
to become unstable when surface contact was lost. To prevent damage to the system, bidirectional switching
was used. Thus, if the end effector lost contact with the environment, the controller reverted to position mode.
This can be seen on some of the force response graphs as straight line tail at zero Newtons near the 7 second
point.

Finally, it is important to note that when coupled with the impact controller, this switching strategy worked
extremely smoothly. Without the impact controller and with nonoptimal explicit force control gains, it was
sometimes difficult to get the controller to switch into force control while using the joystick. Also, impacts
without the impact controller and with bidirectional switching could send the controller into a bouncing limit
cycle. This was true for proportional gain control (Kfp = 0:75) and integral control (Kfi = 7:5).

6.8 Conclusion

This chapter has presented the experimental results of implementations of explicit force and impedance con-
trol strategies for force trajectory tracking and impact transition. The explicit force control strategies imple-
mented were: proportional with feedforward, integral, filtered feedback proportional–derivative, and second
order low pass filtering. Second order impedance control, with and without dynamics compensation, was
also implemented. The data permits several important conclusions. First, force trajectory tracking is best
accomplished with integral gain explicit force control. Second, impedance control is essentially the same as
proportional force control with feedforward. Third, impact control is best accomplished with proportional
gain control with negative gain, or equivalently with impedance control with a mass ratio less than one. And
fourth, PD force control and damping strategies should not be relied on to provide stability to the system
when in contact with the environment, since it is impossible to obtain a true derivative.

The results of this chapter also verify that the model developed in Chapter 2 is correct. The predictions
of system behavior made in Chapters 3, 4, and 5 were based on the model and shown to be accurate by the
experimentation discussed in this chapter.
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These results are unique in many ways. While integral control has been utilized by many researchers,
its efficacy has never been experimentally demonstrated against the full spectrum of control strategies. Also,
following the guidance of the theoretical analysis of previous chapters it has been possible to show for the
first time the commonality of explicit force control and impedance control. This has also provided the insight
to develop and demonstrate a new control strategy for hard surface impacts. Finally, some of the pitfalls of
implementation of these strategies have been made much more lucid.



Chapter 7

Superquadric Artificial Potential
Functions

7.1 Introduction

Previous discussion of impedance and force control has centered around the situation of contact with the
environment. It has been shown how explicit force control with proportional gain and feedforward has es-
sentially equivalent responses as second order impedance control. In fact, these strategies are equivalent for
the case of a stiff environment. As was discussed in Section 4.6, this connection between the two strategies
implies that the impedance parametersK andC can be thought to provide a commanded force as a function
of position:

fc = K(xc � xm) + C( _xc � _xm) (7.1)

Conversely, this chapter introduces the concept of interpreting the measured force as a position dependent
impedance relation:

fm = Z(xm) (7.2)

When in contact with the environment, this interpretation is not advantageous since the force value can be
used directly from measurements, and the impedance function for the environment is not generally known.
But when not in contact with the environment, the functionZ(x) can be created. In this case,fm is not a real
force, physically experienced by the manipulator. (Therefore the reaction force compensation termJT fm is
not used in the control strategies.) Instead,fm is anartificial force, calculated as a function of the manipulator
position, and dictating arm motion through the actuator torques. For instance, the artificial force could be a
repulsive force that is modelled to exist emanating from an obstacle. Similarly, it could be an attractive force
toward a goalpoint. In fact, it can be seen that the commanded forcefc is exactly this type of attractive force.
Therefore, in general it is the sum offc andfm which dictate the motion of the manipulator. This one sum of
the artificial forces can be obtained from the gradient of an appropriately constructedartificial potential field:

fc + fm = fartificial = �r�artificial (7.3)

The use of artificial potentials for manipulator control has mainly been proposed to address the obstacle
avoidance problem. Other methods have been proposed to address obstacle avoidance, but they are usually
very computationally intensive. Artificial potential methods provide a acceptable alternative for obstacle
avoidance in real time. However, the artificial potential method does have the problem of local minima which
may exist in the potential function. This chapter presents a new artificial potential formulation, based on
superquadrics, which eliminates some of these problems. In particular, it is guaranteed that no minima will
be created for a single obstacle in an attractive well. Further, this chapter introduces a new concept of object
approach using potentials to slow the manipulator and lessen impact forces.

98
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This chapter is organized as follows: First a review of obstacle avoidance strategies will be given, and
the domain of artificial potential methods will made clear. Then, in Section 7.3 the attributes of artificial
potentials will be outlined by reviewing the work of other researchers. In the course of this review, it will be
indicated which aspects of previous schemes are valuable, and which should not be retained. In Section 7.4
the proposed superquadric potential scheme will be described in detail, and its advantages highlighted. In
Section 7.5 the addition of the superquadric avoidance potential with global attractive potentials will be
mathematically described, and the criterion for the elimination of local minima will be discussed. Also,
dynamically changing potentials will be introduced. In Section 7.6 the efficacy of the superquadric potential
formulation will be evaluated by simulating both obstacle avoidance and approach. Finally, in Section 7.7
some experimental results of the implementation of the obstacle avoidance potential on the CMU DDARM
II are presented.

7.2 Review of Obstacle Avoidance

The problem of moving in space while avoiding collisions with the environment is known as obstacle avoid-
ance or path planning. The obstacle avoidance problem is important for both mobile robots and manipulators
[39, 30, 55, 42]. For a mobile robot, the goal is to devise a strategy that will move the robot to its desired
destination without colliding with obstacles. In addition, a robust obstacle avoidance scheme should be ca-
pable of dealing with moving obstacles. For a manipulator, the problem is more complicated. Not only must
the end effector move to the desired destination without collisions with obstacles, but the links of the arm
must also avoid collisions. Because this additional requirement is more restrictive, a strategy that works for
manipulators can be applied to mobile robots. Therefore, the concern here is with obstacle avoidance for
manipulators, and the review of previous work in the field is similarly limited in scope.

Research in the area of obstacle avoidance can be broadly divided into two classes of methodologies:
global and local. Global methodologies rely on the description of the obstacles in the configuration space of
a manipulator [61, 37, 52]. Local methodologies rely on the description of the obstacles and the manipulator
in the Cartesian workspace [30, 3, 35].

Global methodologies require that two main problems be addressed. First, the obstacles must be mapped
into the configuration space of the manipulator [37]. Second, a path through the configuration space must be
found for the point representing the manipulator. Two techniques are used to generate these paths: geometric
searches and artificial potentials. The geometric search technique relies on an exhaustive search of the unoc-
cupied configuration space for a continuous path from the start point to the goal point [61, 39, 38, 55, 15].
If a path exists, it will be found. If multiple paths are found, the best may be chosen. The artificial potential
technique surrounds the configuration space obstacles with repulsive potential energy functions, and places
the goal point at a global energy minimum [49, 52, 47, 66]. The point in configuration space representing the
manipulator is acted upon by a force equal to the negative gradient of this potential field, and driven away
from obstacles and to the minimum.

Global methodologies have several disadvantages. The algorithms necessary for global methods are com-
putationally intensive. Also, the computational costs increase quickly as a function of the manipulator’s
degrees-of-freedom: at least exponentially for geometric search techniques, and at least quadratically for po-
tential energy techniques [52]. Thus, they are suited only for off-line path planning and cannot be used for
real-time obstacle avoidance. An immediate consequence is that global algorithms are difficult to use for ob-
stacle avoidance in dynamic environments, where the obstacles are moving in time. Also, when using global
algorithms it is very difficult to describe complicated motion planning tasks such as those arising when two
manipulators cooperate.

A viable alternative to global methodologies is provide by local ones [30, 3, 35, 64]. Local methodolo-
gies also employ the use of artificial potential functions like those discussed previously. However, unlike
configuration space potentials, local potentials are expressed in the Cartesian workspace of the manipulator.
Obstacles to be avoided are surrounded by repulsive potential functions and the goal point is surrounded
by an attractive well. These potentials are added to form a composite potential which imparts forces on a
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model of the manipulator in Cartesian space. Torques equivalent to these forces cause the motion of the real
manipulator.

The main advantage of local techniques is that they are less computationally demanding than global ones.
Thus they can be used in real-time control. Further, they provide the necessary framework to deal with
dynamic (changing) environments and can be used for real-time obstacle avoidance. Also, when used with
a teleoperated manipulator, local artificial potentials provide low level obstacle avoidance. In this case, the
path planning of the manipulator is being performed by the operator and the global methodologies lose their
value as robust path planners.

However, local methodologies have one distinct problem: the addition of attractive and repulsive poten-
tials can create local minima in the potential function. Any local minimum will cause the manipulator to
experience no net artificial force, and thereby stop at an unintended location. A robust artificial potential
function model of the environment should have no local minima [33, 63].

This chapter proposes the use of an artificial potential scheme based on the superquadric, a mathematical
function which is employed in computer vision and object modelling techniques [4, 5]. This scheme provides
obstacle avoidance capability for manipulators in an environment of stationary or moving objects, preventing
end effector and link collisions with these objects. This local avoidance scheme provides obstacle avoidance
capability without creating local minima.

The superquadric is a deformable parametric surface and is used as the isopotential surface for the poten-
tial function. Since it is deformable, isopotential surfaces near the object may closely model the object, while
surfaces further away can be spherical. These spherical surfaces prevent the formation of local minima when
this function is added to a larger spherical attractive potential well.

The assignment of potential energy values to the isopotential surfaces determines the repulsive nature of
the function. Two possibilities exist: the avoidance potential function, or the approach potential function. The
avoidance potential function has a potential energy value at the surface of the object which is larger than the
initial kinetic energy of the manipulator. Thus, an energy barrier is established which cannot be surmounted.
The easiest way to ensure that the potential energy barrier is large enough is to force the potential function to
go to infinity at the object surface.

Also proposed is a second type of artificial potential energy function — the approach potential [63].
Instead of having a potential function go to infinity at the object surface (as with the avoidance potential),
the potential energy can go smoothly to a finite value less than the kinetic energy of the manipulator. As the
manipulator moves toward the object, it gains potential energy, loses kinetic energy, and slows down. But
it always has enough kinetic energy to reach the surface. Thus the approach potential provides deceleration
forces that ensure a safe contact velocity at the surface. Once stable contact has been established, force
control of the manipulator may begin.

7.3 Attributes of Artificial Potentials

The major interest in artificial potential models has been in realizing obstacle avoidance schemes [35, 33,
48, 21, 65]. These schemes require the addition of attractive and repulsive potentials. An attractive potential
well is generally a bowl shaped energy well which drives the manipulator to its center if the environment
is unobstructed. However, in an obstructed environment, repulsive potential energy hills are added to the
attractive potential well at the locations of the obstacles, as in Figure 7.1. The addition of attractive and
repulsive potentials provides obstacle avoidance capability.

In this section, the attributes of the attractive and repulsive potential functions that have been proposed
will be reviewed. First, the two types of attractive wells, quadratic and conical, are described. Then, the
proposed repulsive potentials are presented and the desirable and undesirable properties that each exhibits are
discussed.

The first type of attractive potential function, the quadratic well, is the most widely used [30, 20, 33]. The
reason for this is twofold. First, a quadratic potential well provides a linear control law with constant gain.
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Consider the quadratic well,U , described by:

U(x) =
k

2
x � x; (7.4)

wherek is constant andx is a position vector. The force,F, from this potential may be obtained by the
gradient:

F = �rU = �kx (7.5)

which is a linear control law (Hooke’s Law). Second, all potentials are quadratic for small displacements.
This may be seen from the Taylor series expansion in one dimension:

U(x0 +�x) = U(x0) + �x
dU(x)

dx

����
x=x0

+
�x2

2

d2U(x)

dx2

����
x=x0

+ : : : (7.6)

For small displacements,�x, the higher order terms may be neglected. The force experienced is:

F (x0 +�x) = �
dU(x)

dx

����
x=x0

��x
d2U(x)

dx2

����
x=x0

� : : : (7.7)

which reduces to Hooke’s Law since the first derivative is zero and the second derivative isk. Potentials with
positive second derivatives are stablizing, preventing large displacements from being achieved and keeping
the approximation valid. Thus the quadratic well is a good attractive potential because of its simple form and
because other potentials reduce to it for small displacements.

A second type of attractive potential function, the conical well, has also been proposed [3]. This function
is quadratic within a given range and then increases linearly:

U(x) =

�
kx � x; jxj < s
2ksjxj � ks2; jxj � s.

(7:8)

The conical well provides a constant magnitude, centrally attractive, force field for distances larger thans.
For smaller distances, the previously described advantages of the quadratic well are utilized.

The second category of potentials, repulsive potentials, are necessary to repel the manipulator away from
obstacles that obstruct its path of motion in the global attractive well. It has generally been recognized that a
repulsive potential should have a limited range of influence [3, 30]. This prevents an object from affecting the
motion of the manipulator when it is far away from the object. Also, the potential function and its derivative
must change smoothly and never become discontinuous [3].

Many proposed repulsive potentials have spherical symmetry. One increases cubically with radial distance
inside of a circular threshold range [3]. Another has a Gaussian shape [33]. These potentials are useful
for surrounding objects with spherical symmetry and singularities in the workspace. Also, when added
to a spherically symmetric attractive well they will not create a local minimum (as will be demonstrated
subsequently). But a spherically symmetric repulsive potential does not follow the contour of polyhedral
objects. For instance, an oblong object surrounded by a sphere effectively eliminates much more volume
from the workspace than is necessary or desirable.

Potentials that follow the object shape were proposed to address the insufficiency of radially symmetric
potentials. Examples are the GPF and FIRAS functions [35, 30]. The potential energy,U(r), of the FIRAS
function is described by:

U(r) =
A

2

�
1

r
�

1

r0

�2

0 < r < r0 (7.9)

wherer is the closest distance to the object surface,r0 is the effective range, andA is a scaling factor.
Figure 7.2 shows this potential forA = 2 andr0 = 6. The isopotential contours of this potential function
are depicted in Figure 7.3. The GPF function has a similar shape. These functions will be referred to as
‘flat-sided’ potentials because of the shape of their isopotential contours.
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Figure 7.1: A repulsive potential added to an attractive well.

Figure 7.2: The FIRAS potential forA = 2 andr0 = 6. Large values have been truncated.
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By itself, a flat-sided potential works well. But when this potential is added to an attractive well, local
minima appear on the side of the object away from the center of the well. Consider the case depicted in
Figure 7.4, where the side of the object away from the attractive well center is tangent to the isopotential
contours of the well. Motion along the linear section of the object contour, from point A to point B, passes
through changing potential values of the attractive well. At points A and B the attractive well potential is
higher than at point C. Since the object potential is the same at A, B, and C, the sum of the object potential
and the attractive well potential has a local minimum at point C. It can be seen that any section of an object
contour that has a radius of curvature greater than the contour of the attractive well will generate a local
minimum ‘uphill’ from the object. The contour of a circular repulsive potential always has a smaller radius
of curvature than the contour of the attractive well in which it is inscribed. Therefore, a circular repulsive
potential will not generate local minima in this way.

In summary, a repulsive potential function that is useful for modelling objects in the environment should
have the following attributes:

1. The potential should have spherical symmetry for large distances to avoid the creation of local minima
when this potential is added to an attractive well.

2. The potential contours near the surface should follow the surface contour so that large portions of the
workspace are not effectively eliminated.

3. The potential of an obstacle should have a limited range of influence.

4. The potential and the gradient of the potential must be continuous.

A novel formulation of a repulsive potential function, based on superquadrics, is proposed to satisfy all of
the above criteria. Not only is this scheme useful for obstacle avoidance, but it can also be used for obstacle
approach. This formulation is presented in the next section.

7.4 Superquadric Potentials

The superquadric potential is a function that has isopotential surfaces shaped like superquadrics. The value
of the potential energy at each surface is determined by the potential energy function. Proposed here are two
repulsive potential energy functions: the avoidance potential function, and the approach potential function.
In this section, the superquadric formulation for isopotential contours is presented, and then the two types of
repulsive potential energy functions are described.

7.4.1 Superquadric Isopotential Contours

As is dictated by attributes one and two above, the isopotential contours of a artificial potential function must
change from spherical at large distances, to the object shape near the surface.

To obtain isopotential contours that follow the object shape near the surface an object may be surrounded
with a superquadric [4, 5]:

"�
x

f1(x; y; z)

�2n

+

�
y

f2(x; y; z)

�2n
# 2m

2n

+

�
z

f3(x; y; z)

�2m

= 1 (7.10)

wheref1, f2, andf3 are scaling functions, andm andn are exponential parameters. Previously we have
employed this function in two dimensions(z = 0) with constant scaling functions [63]:

�x
a

�2n
+
�y
b

�2n
= 1: (7.11)
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Figure 7.3: The isopotential contours of the FIRAS potential in Figure 7.2.
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Well Center

Figure 7.4: The coincidence of isopotential contours at points A and B indicates the presence of a local
minimum in the vicinity of point C.
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This form is called ann-ellipse wherea is the semi-major axis andb is the semi-minor axis [17, 30]. The
use of this simpler form in potential functions is first reviewed, and then a generalization to the superquadric
potential form is presented.

In order for the aboven-ellipse to be useful as a potential function, two constraints should be imposed at
the surface of the object: first, the ellipse must touch the corners of the surrounded object (which is rectangular
for this case); and second, the area between the object and the ellipse must be minimal. These constraints
yield:

a =
w

2

�
2

1

2n

�
b =

h

2

�
2

1

2n

�
(7.12)

wherew is thex dimension of the rectangle, andh is they dimension.
At the surface of the object, the isopotential contours should match the shape of the surface. This requires

thatn go to infinity at the surface. However, away from the surface the contours must become spherical in
accordance with the first attribute. Lettingn go to one will make the contours elliptical. This ellipse may be
further modified by a coefficient that multiplies they term. The contour function thus becomes:�

x

a

�2n

+

�
b

a

�2 �
y

b

�2n

= 1 n � 1: (7.13)

It is also necessary to have a variable that specifies each contour. The variable acts as a pseudo-distance
from the object, being zero at the surface and increasing with successive contours away from the surface.
Along thex axis this variable can be made to change linearly. Thus,

K =

"�
x

a

�2n

+

�
b

a

�2�
y

b

�2n
# 1

2n

� 1: (7.14)

Figure 7.5 shows a plot of K at regular intervals withn varying from a very large value to a value near unity.
Since the parametern must vary from infinity to one whileK varies from zero to infinity,n is defined as:

n =
1

1� e���nK
(7.15)

where� and�n are adjustable parameters. Unless otherwise noted,�n will be unity. Other definitions ofn
are possible, but this form is useful because it is related to the magnitude of the potential, as will be shown in
Section 7.4.2.

The above description, expanded to three dimensions, yields an ellipsoid instead of an ellipse. For the
three dimensional case,f3 in Equation (7.10) is a third constant semi-axis,c, and the parameterm can be
given the form:

m =
1

1� e���mK
: (7.16)

If the parameter�m is set equal to�n, thenm equalsn and Equation (7.10) describes ann-ellipsoid.
The elliptical (ellipsoidal) description may be generalized to the superquadric formulation by using non-

constant scaling functions,f i, in Equation (7.10). This provides a method of deforming then-ellipse (el-
lipsoid) to other shapes. This effect can be interpreted as changing the semi-axes of the ellipse (ellipsoid).
This is demonstrated by an example in two dimensions for a superquadric contour that snugly surrounds a
trapezoid as shown in Figure 7.6. In this case, the semi-minor axisb varies fromb0 to b1 as the height of the
object varies fromh0 to h1 over its total width,2w. Therefore, at the object surface(K = 0),

b(x) = mx+ d (7.17)

m =
h1 � h0
2w

=
b1 � b0
2a

(7.18)

d =
b1 + b0

2
: (7.19)
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Figure 7.5: The isopotential contours forK = 0:1 toK = 2:6, and� = 1:5.
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Figure 7.6: Superquadric isopotential contours for a trapezoid.
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This value ofb provides a superquadric which touches the corners of the trapezoid, withK = 0. Superquadric
isopotential contours away from the object are obtained by scalingx:

f2 = m
x

K + 1
+ d: (7.20)

Reducingh1 to a very small value gives a superquadric model of a triangle, as shown in Figure 7.7.
Finally, this example can be extended into three dimensions for superquadric models of wedges, pyramids,

and cones. For a wedge,

f1 = a (7.21)

f2 = m
x

K + 1
+ d (7.22)

f3 = c: (7.23)

For a pyramid,

f1 = a (7.24)

f2 = m2
x

K + 1
+ d2 (7.25)

f3 = m3
x

K + 1
+ d3: (7.26)

And for a cone oriented along thez-axis,

n = 1 (7.27)

f1 = m
z

K + 1
+ d (7.28)

f2 = m
z

K + 1
+ d (7.29)

f3 = c: (7.30)

Thus, a formulation has been developed to describe isopotential contours with superquadrics. With the
form of the isopotential contours established, it is necessary to assign potential energy values to them. This
is done in the next section.

7.4.2 Repulsive Potential Energy Functions

The potential energy function must assign potential energy values to the isopotential contours defined previ-
ously. Two types of repulsive energy functions have been utilized: the avoidance potential, and the approach
potential.

The Avoidance Potential

The avoidance potential is a function which surrounds an object and prevents a manipulator from touching the
object. This must be true, independent of the manipulator’s kinetic energy. The easiest way to ensure this is
to set the magnitude of the potential at the surface to infinity. Away from the surface, the energy values must
be in accordance with the third and fourth attributes outlined in Section 7.3, and in accordance with natural
potentials (e.g. electrostatic, gravitational, etc.) exhibit an inverse dependence on distance. Therefore, the
potential function must have aK�1 dependence for short distance repulsion, but drop to zero faster than
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K�1 for large distances. Also, the function and its derivative must be continuous. A function that has these
attributes is the Yukawa potential [8]:

U(K) = A
e��K

K
(7.31)

Figures 7.8 and 7.9 show this function with� = 1 andA = 1 for a rectangle and a triangle.
The parameter� determines how rapidly the potential rises near the object and falls off away from the

object. This rate must be related to the rate at which the ‘n-ness’ of the ellipse changes as expressed in
Equation (7.15). These rates have been chosen to be proportional, with the constant of proportionality being
�n in Equation (7.15). Usually,�n = 1 and both rates are equal to the value of�.

The parameterA acts as an overall scale factor for the potential. Large values ofA will make the object
have a spherical field of repulsive force at large distances. Small values ofA will allow the object to be
approached much more closely. At this closer range, the isopotential contours will have large values ofn and
will approximate the shape of the object. For the rest of this discussionA will assumed to be unity unless
otherwise noted.

The Approach Potential

The approach potential is a function which surrounds an object and decreases the approach speed of the
manipulator as it move towards the object. This is achieved by setting the value of the potential energy at the
surface of the object to be slightly less than the initial kinetic energy of the manipulator. As the manipulator
moves toward the object its kinetic energy is transformed to potential energy, and its velocity decreases.
Setting the magnitude of the potential function at the surface less than the initial kinetic energy ensures that
the manipulator will always reach the surface.

An appropriate approach potential should have all of the attributes of the avoidance potential, but should
go to a finite maximum value at the surface of the object. Therefore, far from the object, the form of the
avoidance potential may be used. However, closer to the surface the potential should be Gaussian in nature,
the slope smoothly changing to zero at the surface so that no artificial force is experienced when real contact
with the environment is established. (At this time, impact control may be employed, as described in Chap-
ter 5.) Because this general form must remain valid for all values of�, a simple polynomial fit is not possible.
Proposed is the function,U(K), which satisfies these criteria:

U(K) =

(
A
K
e��K ; K � 1

A exp
�
��K1+ 1

�

�
; 1 > K � 0

(7:32)

Figures 7.10 and 7.11 show this function with� = 1 for a rectangle and a triangle.

This section has presented a superquadric isopotential contour formulation and the two types of repulsive
potential energy functions. The developed superquadric potentials have the attributes outlined in Section 7.3,
but only asymptotically. The major concern raised by this fact is the avoidance potential is never exactly
circular (becauseK is never infinite in practice). Thus, attribute number one may be violated when the
avoidance potential is added to a spherical attractive well. This issue is explored analytically in the next
section.

7.5 Addition of Superquadric Avoidance Potentials and an Attractive
Well

When adding superquadric avoidance potentials to a global attractive well, several situations must be consid-
ered. These may be divided into single object and multi-object scenarios.

For a single obstacle (only one avoidance potential), the relation between the positions of the avoidance
potential and the global well center is important. Three distinct situations arise. First, the global well center
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Figure 7.7: The isopotential contours surrounding a triangle forK = 0:1 toK = 2:6, and� = 1:5.

Figure 7.8: The avoidance potential for a rectangle with� = 1 andA = 1. Large values have been truncated.
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Figure 7.9: The avoidance potential for a triangle with� = 1 andA = 1. Large values have been truncated.

Figure 7.10: The approach potential function for a rectangle with� = 1.
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is far from the object and is not effected by the object potential. Second, the global well center is inside
the object to be avoided. Or third, the situation which is between the above two extremes, the global well
center is within the range of influence of the avoidance potential. The second case will not be considered any
further since it precludes the possibility of having the manipulator obtain the goal position. The remaining
two situations, will be discussed in Sections 7.5.1 and 7.5.2.

If multiple objects are to be added to a global attractive well, the relation of these objects to each other
is of primary importance. (The effect of the position of each to the global well center is covered by the
single object analysis.) If multiple objects are placed at distances from each other such that the addition of
their potential energy is nonzero, then the single object analysis breaks down. For example, multiple objects
may be placed in a cluster a such a way that they effectively form a larger object with a concavity that faces
away from the global well center. This concavity may cause a local minimum that can trap the manipulator.
To avoid this problem, the object cluster and its concave regions may be treated as one large object and
surrounded with one potential. However, this solution will obviously not work as the workspace become
heavily populated with obstacles. It appears that in this case a higher level trajectory planner will become
necessary, and this scenario is not addressed any further. Therefore, the following analysis is restricted to a
single obstacle in a global well.

7.5.1 Addition of A Superquadric Avoidance Potential to a Distant Attractive Well

The concern when adding an avoidance potential to a distant attractive well, is that an undesirable minimum
may be created ‘uphill’ from the object. Because the superquadric avoidance potential only becomes a circle
asymptotically, a spurious minimum may be present. However, this minimum can effectively be removed by
making the depression associated with it smaller than the resolution of the system.

For a rectangular object, the minimum value of� is determined for its worst case orientation. This is
when the longest dimension of the object is normal to the shortest distance between the starting position and
the attractive well center. In other words, the object is placed ‘across’ the desired path. In this configuration,
the isopotential contours of the object to be avoided are tangent to the isopotential contours of the attractive
well. Using a coordinate system centered on the object, and thex-axis along its longest dimension, the
isopotential contours have a slope of zero and an infinite radius of curvature along they-axis. This can be
seen by rearranging Equation (7.14) asy = f(x), taking the first and second derivatives, and settingx = 0.
Mathematically, the superquadric is linear at the axes whenn 6= 1. Thus,mathematicallythe problem that
was described earlier still exists — an isopotential object contour with a radius of curvature larger than the
spherical well in which it is placed will definitely cause minima if it is placed tangent to the well. However,
this problem can be effectively eliminated for the superquadric potential function by adjusting the parameter
alpha. The adjustment makes the depression from the local minimum smaller than the resolution of the
system. This solution is presented in detail below.

Consider again a coordinate system centered on the object, oriented as described above. The potential
energy,U , has the following form:

U = Uo(K) + Uw(x) (7.33)

where the object and well potentials are obtained from Equations (7.31) and (7.4) as:

Uo =
e��K

K
and Uw = `x � x (7.34)

with ` constant andx = (x; y � y0), wherey0 is the location of the attractive well center.
First it is necessary to find the local minimum along they-axis that is on the opposite side of the object

from the attractive well center. At this point the total force is zero.

0 = rU =
@

@x
[Uo + Uw] x̂+

@

@y
[Uo + Uw] ŷ (7.35)
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0 =
@U

@K

"�
x

a

�2n

+

�
b

a

�2�
y

b

�2n
# 1

2n
�1�

1

a

�2n

x2n�1 + 2`x (7.36)

0 =
@U

@K

"�
x

a

�2n

+

�
b

a

�2�
y

b

�2n
# 1

2n
�1�

b

a

�2�
1

b

�2n

y2n�1 + 2`(y � y0) (7.37)

where
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= �e��K
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�
: (7.38)

Considering only they direction at they-axis (x = 0),
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is a cubic equation of the form:

0 = �e��(� + 1)c+ 2`(y � y0)(cy � 1)2 (7.40)

with

K(x=0) = cy � 1; c �
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�
; � � �K: (7.41)

Solving for the one real root of this equation yields:
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g = �
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3
(y0 � 1)2 (7.44)
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�
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Having solved for they coordinate of the minimum, it is necessary to determine the size of the local
depression. This is done by finding the first maximum in thex direction for they value obtained. The value
of x is obtained from Equations (7.36) and (7.37) as:

x =
a

b

�
y2n�1

y � y0

� 1

2n�2

: (7.46)

Given that the resolution of the system being modelled must be less than2x, it is only necessary to satisfy
the above equation. Becausey andn are both functions of�, this equation can be used for an iterative solution
of �. With a value of� determined,y andn may be obtained from Equations (7.15), (7.40), and (7.41). Then
K and�may be obtained from Equations (7.41). In this way, a minimum value of� may be calculated which
permits the addition of attractive and repulsive potentials without the creation of a local minimum.



CHAPTER 7. SUPERQUADRIC ARTIFICIAL POTENTIAL FUNCTIONS 113

For a rectangular object in the conical well, a similar analysis may be performed. In this caseUw in
Equation (7.33) is obtained from Equation (7.3) as:

Uw = 2`sjxj � `s2: (7.47)

Therefore, Equation (7.35) yields:
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Again, considering only they direction at they-axis,
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is a quadratic equation of the form:

0 = �e��(� + 1)c+ 2`s(cy � 1)2: (7.51)

Solving for the meaningful root of this equation yields:

y =
1

c
+

r
e��(� + 1)

2`sc
: (7.52)

As before, they coordinate of the minimum is used to determine the size of the local depression. This is done
by finding the first maximum in thex direction for they value obtained. The value ofx is obtained from
Equations (7.48) and (7.49), and is equivalent to Equation (7.46). As was outlined before, a solution for�
may then be obtained.

For non-rectangular objects in quadratic and conical wells, the same analyses may be used as worst case
scenarios. The rectangle considered will have the dimensions of the maximum height and width of the non-
rectangular object. A valid bound for� is determined since the rectangle is more likely to form a local
minima. As was described previously, this is because the superquadric isopotential contours that intersect the
object axes at right angles have an infinite radius of curvature at the points of intersection. The parameter
� eliminates the local minimum by forcing the depression associated with it to become smaller than the
resolution of the system. This is equivalent to saying that the parameter� forces the isopotential contours
to circles (within the resolution of the system) at the range of the former minimum. For a non-rectangular
object the same value of� will also provide circular isopotential contours at the necessary range, ensuring
that these objects will not cause local minima.

7.5.2 Addition of a Superquadric Avoidance Potential to a Close Attractive Well:
Dynamic Potentials

The previous analysis determines a value of the parameter� that prevents the formation of a local minimum
‘uphill’ from the obstacle. However, it is assumed that independent of the value of�, the object potential will
be zero at the center of the global attractive well. If this is not the case, the addition of the global well and
the object potential will displace the global minimum from the center of the global well. In Figure 7.12(a)
the global minimum will move from point C to point D. This implies that the manipulator will not achieve
the goal point even though no local minima are present in the environment. Increasing� may eliminate
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Figure 7.11: The approach potential function for a triangle with� = 1.

(b)

C

B

A

(a)

DC

B

A objectobject

Figure 7.12: These figures show the effect of having the global well center, point C, very close to an obstacle.
In (a) the elimination of a local minimum at point A moves the global minimum from C to D. In (b), reshaping
the object potential moves the global minimum to the global well center, point C. This causes the formation
of a local minimum at point A. However, if the manipulator has already moved to point B before the potential
changes shape, the new local minimum will provide no problem.
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this problem by reducing the range of the object potential. However, if the global well center is within the
smallest sphere (circle) that can enclose the object, then increasing� will not help. Since there is no way for
the isopotential contours to become circular inside this range, the value of the object’s avoidance potential can
not go to zero, by design. If the parametersA or �n are modified to force the obstacle potential to zero at the
global well center, they will also cause the obstacle potential to become nonspherical, as in Figure 7.12(b).
This nonspherical shape will cause the formation of a local minimum on the other side of the obstacle at point
A, as discussed in Section 7.3.

Thus a dilemma exists: to avoid the creation of a local minimum, the position of the global minimum
must been shifted; and to remove this shift, a local minimum must be created. The only solution to this
problem is to dynamically change the potential shape. Thus, if the manipulator is ‘uphill’ from the object,
the parameters must be set to eliminate the formation of the local minimum. As the manipulator moves to the
‘downhill’ side of the obstacle, near point B in Figures 7.12(a) and 7.12(b), the potential parameters may be
changed to shrink the object potential. This will move the global minimum back to the center of the global
attractive well at point C in Figure 7.12(b). There will then be the formation of a local minimum ‘uphill’
from the object at point A in Figure 7.12(b), but this is of no concern since that region of the workspace has
already been traversed.

This process of dynamically altering the shape of the avoidance potential is not possible with the potentials
that have been previously reviewed, and is presented here as another advantage intrinsic to the superquadric
potential formulation.

7.6 Simulation

To test these concepts the performance of two link and three link (redundant) planar manipulators interacting
with an artificial potential have been simulated. The motion of these arms is caused by the artificial forces
acting on the end effector and the individual links. The end effector is attracted by a goal point and repelled
by the obstacle, while the links are repelled by the obstacle if the link interaction is ‘on’. The results indicate
that the superquadric potentials provide a valid method of obstacle avoidance for a manipulator, and an
improvement over existing potential functions.

7.6.1 End Effector Interaction

There are two ways for the arm to react to the artificial forces applied to the end effector. The first method
transforms the forces into the corresponding joint torques through the transpose of the Jacobian:� = JTF .
The joint accelerations can then be derived from the Lagrangian [7]. The second method obtains joint accel-
erations by directly transforming the Cartesian accelerations that would be experienced by a unit mass in the

potential well: �� = J�1
�
�x� _J _�

�
. The first method is desirable because it does not involve the inverse of

the Jacobian, which may become singular. For avoidance potentials, the first method is used. But the second
method must be used when employing an approach potential.

The approach potential concept requires that the final potential energy of the manipulator be less than or
equal to the initial sum of the kinetic and potential energy. Thus, as the arm approaches the object, all of its
kinetic energy is converted to potential energy and the arm stops at the surface. While the kinetic energy of
the arm may be obtained from the Lagrangian, the artificial potential energy of the arm cannot [7]. (In fact,
the potential energy in the Lagrangian is zero because the manipulator used in these simulations is assumed to
be operating in a plane perpendicular to the force of gravity.) Instead, the potential energy must be obtained
from the position of the manipulator links in the potential well. Even for a two link arm with one dimensional
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links and uniform density,�, this potential energy has the form:

PE =

K(elbow)Z
K(base)

A�
e��K

K
dK +

K=1Z
K(elbow)

A�
e��K

K
dK

+

K(end e�ector)Z
K=1

A� exp
�
��K1+ 1

�

�
dK + PE(potentialwell) (7.53)

assuming that the end effector is at a distance ofK � 1 away from the object. Obviously, this form of the
potential energy is intractable. Hence it is not used in the Lagrangian and can not be used in this approach
potential scheme.

Instead, the kinetic and potential energy is obtained from the motion of a unit point mass located at the
end of the arm. Therefore, the second method of end effector interaction must be used to determine this
motion.

7.6.2 Link Interaction

While there are two methods for determining the end effector interaction that will guide it around obstacles,
neither method alone will prevent collisions of the links with the obstacles. To prevent these collisions,
there must be an interaction of the links with the artificial force field. But a link occupies a region near
the obstacles, not just a point. How then should the interaction be calculated? It would be too costly to
integrate the total interaction of the link with the field. Also, it is the avoidance of collision that is of primary
importance. Therefore, the point on the link which is closest to the obstacle should determine the amount of
repulsion experienced. The following is an algorithm which determines the point on a link which is closest
to an obstacle.

1. Consider the obstacle corner points with respect to the link sides.

(a) Consider the line determined by two successive corners of the link. This line defines two half
planes, one of which doesn’t contain the link.

(b) If all four of the obstacle corner points are in the halfplane without the link, proceed. Consider
only the point which is closest to the halfplane edge.

(c) Project this obstacle corner point onto the halfplane edge.

i. If the perpendicular projection is within the side of the link then the obstacle–corner–point /
link–side distance is returned as well as the point of projection on the link side.

ii. Otherwise, the distance from the obstacle corner point to the closer corner of the link side is
saved, as well as this link corner’s coordinates.

(d) After considering all four link sides, save the closest distance obtained and the corresponding link
corner point.

2. Consider the link corner points with respect to the obstacle sides. Repeat steps 1.a through 1.d, inter-
changing the roles of the link and obstacle.

3. If steps 1.c.i or 2.c.i have not caused a return, determine the closer of the distances saved in steps 1.d
and 2.d, and return this value with the corresponding link corner point.

Once the closest point of the link to the object has been determined, the artificial force is calculated. This
force vector and the closest point determine the line of force. The line segment which runs through the axis
of rotation of the link, along its length, acts as the lever arm. The point of intersection of the line of force with
the line that contains the lever arm determines the length of the lever arm. If the lever arm is longer than the
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link length then it is set to the link length. If the lever arm is less than zero ( that is, it extends from the axis
in the direction opposite of the link ) then it is set to zero. The length of this lever arm for linkN is denoted
aN .

The torque exerted on the joints is determined by a Jacobian for each link. Thus, for force on theN th
link the torque is�N = JTNFN , where the transposes of the Jacobians for a three link manipulator are:

JT1 =

2
4 0 a1C1

�a1S1 0
0 0

3
5 (7:54)

JT2 =

2
4�l1S1 � a2S12 l1C1 � a2C12

�a2S12 a2C12

0 0

3
5 (7:55)

JT3 =

2
4�l1S1 � l2S12 � a3S123 l1C1 � l2C12 + a3C123

�l2S12 � a3S123 a2C12 + a3C123

�a3S123 a3C123

3
5 (7:56)

whereS andC denote sine and cosine, and the subscripts indicate their arguments which are the sum of the
corresponding angles. For a two link manipulator,JT1 andJT2 may be used, ignoring the third row.

The total torque caused by the interaction of the links with the repulsive field of the obstacle is simply:
� =

P
�N .

7.6.3 Simulation Experiments

Three main situations were examined: 1.) Motion to a goal point while avoiding an object surrounded by
a flat-sided potential, 2.) Movement to a goal point while avoiding an object surrounded by the proposed
superquadric avoidance potential, 3.) and approach of an object surrounded by the proposed superquadric
approach potential. In the first two situations the end effector experiences an attractive force from a goal
point and a repulsive force from the obstacle, and the links of the arm experience a repulsive force from the
obstacle. For the third situation, the use of a goal point is optional and there is no link interaction.

Flat-Sided Potential

Figure 7.13 shows the simulated manipulator moving from the initial position to the goal position, success-
fully avoiding the obstacle. In this simulation the FIRAS potential was used as the avoidance potential around
the obstacle. For this initial configuration of the manipulator the FIRAS potential works well. However, the
repulsive force experienced by the links substantially aids the end effector’s motion around the obstacle. To
minimize this help, the end effector can be made to approach the obstacle while normal to its surface. This
configuration, shown in Figure 7.14 accentuates the effect of the local minimum on the “uphill” side of the
obstacle. With the link interaction reduced, the end effector settles into this local depression in the potential
and stops.

Superquadric Avoidance Potential

The same arm trajectories have been initiated with the superquadric potential in the circular attractive well.
Figures 7.15 and 7.16 show the end effector of a two link manipulator successfully navigating around the
obstacle. This confirms the absence of a local minimum ‘uphill’ from the object. However, with only two
degrees of freedom, the arm can not move completely around the obstacle when configured as in the second
example — it becomes stuck when the repulsive torque of the obstacle on the second link equals the attractive
torque of the goal point on the end effector. This is not a deficiency in the form of the potential, but a
deficiency in the two link manipulator. Figure 7.17 shows that a three link design does not have this same
problem. The arm is able to ‘snake’ around the obstacle, and the end effector is able to achieve the goal point.
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Figure 7.13: Successful avoidance of an obstacle using the FIRAS potential(r0 = 1:5).
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Figure 7.14: Unsuccessful avoidance of an obstacle using the FIRAS potential(r0 = 1:5). The end effector
has settled in a local minimum just ‘uphill’ from the obstacle.
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Figure 7.15: Successful avoidance of an obstacle using a superquadric potential(� = 7:0).
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Figure 7.16: Successful avoidance of an obstacle using a superquadric potential. The minimum value of
� that will allow avoidance has been used(� = 4:4). The arm is prevented from reaching the goal by its
geometric limitations.
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Figure 7.17: Successful avoidance of an obstacle using the newly proposed function. The minimum value
of � that will allow avoidance has been used(� = 3:76). The redundancy of the manipulator enables it to
‘snake’ its way around the obstacle. The dotted manipulator is an intermediate configuration.
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A third situation was also examined. Four obstacles surrounded by superquadric avoidance potentials
were placed in a conical attractive well. Figures 7.18 and 7.19 show the manipulator successfully navigating
between them to achieve the specified goal point. The start and finish points were interchanged for the two
simulations. Different trajectories were created, but the traversal time was about the same.

Approach Potential

Finally, the motion of the end effector approaching the surface of a rectangle and a triangle has been simulated
in Figures 7.20 and 7.21. For these simulations, no attractive point was used. Instead, the arm was given an
initial end effector velocity with its corresponding kinetic energy. The height of the potential at the surface
was set to ninety percent of the initial kinetic and potential energy. To eliminate any computational errors due
to the discrete time nature of the calculations, the height of the potential was continually modified to ninety
percent of the kinetic and potential energy. Also, the end effector was position controlled in the direction
parallel to the surface.

7.7 Experiments

The proposed avoidance strategy has been implemented as a controller on the CMU DDARM II system. The
current implementation prevents collisions of the end effector with obstacles in a two dimensional horizontal
plane. Since the CMU DDARM II is a SCARA configuration arm the end effector hangs down into the plane,
eliminating the need for the calculation of link interaction forces.

Figure 7.22 shows multiple paths taken by the end effector in successive experiments from different
starting positions in a conical well. The end effector always reaches the goal point even though different
directions may be taken around the obstacle. Notice that no local minimum is encountered.

Figure 7.23 shows a path taken to successfully navigate between two obstacles in a conical well. The
potential around the rectangle, as evidenced by the path taken, is essentially spherical. This is necessary to
prevent the creation of a local minimum in front of it. The path around the triangle, however, follows its
shape more closely. This was accomplished by reducing the parameterA. No minimum is created due to the
triangle’s orientation.

The superquadric avoidance potentials have also been used while the manipulator is under control of
a joystick. In this scenario the operator is prevented from inadvertently driving the manipulator into the
obstacles by the repulsive force of the avoidance potentials. The obstacle potentials are given a small range
(by reducingA) so that very little of the workspace is eliminated. No global well is used. Effectively, this
scenario replaces the artificial potential path generation with the much higher level path planning of the
operator. However, the superquadric avoidance potentials still remain valuable as a preventative measure
against operator error.

The current implementation calculates the artificial forces due to the global well potential and the su-
perquadric object potential. Commanded joint torques may be calculated by use of the transpose of the
Jacobian or by using resolved acceleration control [41]. The algorithm runs at a peak speed of 375 Hz for one
object, 200 Hz for two objects. Due to the sequential computation of the object potentials, addition of other
obstacles to the environment increases the computational requirements linearly. Parallelization of the code
could be easily implemented with the addition of more processors, yielding a control rate equal to that for
one object. Object positions are currently constant valued variables in the control code, but visual feedback
will in the future provide object position data in real time, enabling dynamic obstacle avoidance.

7.8 Conclusion

A novel superquadric potential has been developed that provides obstacle avoidance and object approach
capabilities. Robust obstacle avoidance and goal acquisition is achieved by governing the end effector mo-
tion with an avoidance potential placed in an global attractive well. Local minima are not generated in the
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Figure 7.18: Successful navigation around four obstacles using superquadric avoidance potentials and a
modified conical attractive well. The dotted manipulators are intermediate configurations.
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Figure 7.19: The same situation as Figure 7.18 except that the starting and ending points have been inter-
changed. Notice that a different trajectory has been created but the time of traversal is about the same.



CHAPTER 7. SUPERQUADRIC ARTIFICIAL POTENTIAL FUNCTIONS 122

-2.00

-1.00

1.00

2.00

3.00

4.00

5.00

6.00

-8.00 -6.00 -4.00 -2.00 2.00 4.00 6.00 8.00

* * * * * * * * * * ******

Figure 7.20: This figure shows successful approach and contact with a rectangle surrounded by the proposed
approach potential. For this simulation there was no attractive point, but the end effector was position con-
trolled in they direction. The initial velocity was 1 unit/sec in thex direction. The contact velocity was 0.06
unit/sec.
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Figure 7.21: This Figure shows successful approach and contact with a triangle surrounded by the proposed
approach potential. For this simulation there was no attractive point, but the end effector was position con-
trolled in they direction. The initial velocity was 1 unit/sec in thex direction. The contact velocity was 0.05
unit/sec.
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Figure 7.22: Experimental data showing two paths taken to successfully avoid an obstacle by using the
superquadric avoidance potential in a conical well. The well parameters are:k = 150 N/m, s = 0.1 m,
damping = 150N � s=m. The object potential parameters are:� = 20,A = 0.1. The numbers along the paths
indicate the time in seconds.
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workspace because of the asymptotically spherical nature of the superquadric potential. Link collisions with
the environment are also eliminated by this scheme. For object approach, a second form of the superquadric
potential may be employed to generate deceleration forces. This scheme reduces contact velocities and forces
to tolerable levels. Both the avoidance and approach potentials have been implemented in simulations of two
and three link manipulators. The avoidance potentials have been successfully implemented in real time on
the CMU DDARM II. The results indicate an improvement over other local potential schemes.
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Figure 7.23: Experimental data showing a path taken to successfully navigate between two objects in a
conical well. The well parameters are:k = 50 N/m,s = 0.1 m, damping = 25N � s=m. For the rectangle, the
potential parameters are:� = 6,A = 0.1. For the triangle, the potential parameters are:� = 3,A = 0.01. The
numbers along the paths indicate the time in seconds.



Chapter 8

Summary and Conclusions

This dissertation has dealt with the broad problem of having a manipulator move through an environment
with obstacles in it, stably impact with a surface in that environment, and subsequently apply force to the
surface. To address this problem it was divided into its three natural parts of object avoidance/approach,
impact control, and force control. The first part was dealt with by the creation of a new artificial potential
formulation based on superquadrics. This potential scheme proved useful for obstacle avoidance without the
creation of local minima, and for creating safe approach trajectories to surfaces in the environment. Upon
contact with the approached surface, impact control becomes important. This second part of the problem was
solved in this thesis by setting the major goal of the controller to be continued contact with the environment,
and not force trajectory following. The result was a control scheme that is consistent with previously proposed
force control strategies, but only correct for the impact phase (and extremely valuable then). After the energy
of impact has dissipated, the third stage, controlling the forces of interaction, becomes dominant. A full
spectrum of force control strategies was analyzed on the same arm / sensor / environment system so that
they could be experimentally compared and contrasted for the first time. Crucial to this analysis was the
development and verification of the fourth order system model. The use of this model in the analysis not only
confirmed its correctness, but also explained the behavior of the tested force controllers.

Interestingly enough, it proved useful within the body of this thesis to discuss the above problem parts in
exactly the opposite order. This is simply because complete understanding of each requires understanding of
the components upon which it is dependent. As has been apparent, a system model is necessary to analyze
force control; an understanding of force control is needed to see its relation to impedance control; a review
of force and impedance control is necessary to see their essential equivalence (particularly, proportional gain
force control), and to see how impact control as well as artificial potential formulations can be derived from
both.

8.1 Contributions

This dissertation has made the following unique and important contributions to the solution of the above
problem:

� The fourth order model of the of the arm / sensor / environment has been experimentally verified.
Correct parameter values have been extracted and physically explained.

� Explicit force control strategies have been theoretically analyzed in the context of the above model,
and the stability properties of each explained.

� Explicit force control strategies have been unified under a common framework.

� Second order impedance control has been shown to be essentially equivalent to proportional gain ex-
plicit force control with feedforward.
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� An stable impact controller has been extracted from the connection of impedance and explicit force
control.

� Experimental verification and evaluation has been performed in six DOF, showing the following results:

– Integral force control is best for force tracking.

– Proportional force control with feedforward is essentially equivalent to second order impedance
control.

– PD force control is impractical (for stiff force sensors).

– Force control schemes that employ the derivative of position or force require very high sampling
rates.

� Superquadric artificial potentials have been developed as an improvement over previously proposed
local obstacle avoidance schemes.

� Artificial potentials have been proposed as a way to generate safe approach trajectories to the environ-
ment.

8.2 Conclusions

The following can be concluded from the results presented in this thesis:

� A correct model of the arm / sensor / environment is necessary to understand and predict the behavior
of force controllers. However, such a model is not necessary to determine controller gains. Good gain
values may be easily determined empirically for new environments.

� Integral force control is the proper choice for superior force trajectory tracking capability. The lag
present with this controller cannot be eliminated (by other proposed schemes) without having the ma-
nipulator lose contact with the environment. The steady state error to a constant input is zero, and the
noise of the system is filtered by the dominant pole. Thus, the response of the system is excellent to the
common command of a constant force. Also, the controller follows the slope of a ramp input correctly,
only delayed in time.

� Impedance Control and Explicit Force Control are usually considered to be two distinctly different
methods of interacting with the environment [70]. However, it has been shown in this dissertation
that proportional gain explicit force control with feedforward, and second order impedance control are
essentially the same control strategy. They become equivalent for very stiff environments. Ironically,
this is exactly the situation for which impedance control has been claimed to be a better choice [22].

� Impact control is the best way to stably contact the environment. It may consist of negative proportional
gain explicit force control with feedforward, or second order impedance control with a very large target
mass.

� Three separate controllers should be used for the three modes of manipulator operation:

– Motion through free space: Position or first order impedance control.

– Impact with environment: Impact control

– Exertion of forces: Integral gain explicit force control.

It has been shown that these may be blended together, through proper switching, to provide excellent
system behavior.
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� Second order impedance control with constant gains is not well suited for free space operation, impact
control,andforce following. Switching the gains improves the performance. However, second order
impedance control still remains an inferior force trajectory follower. It seems apparent that if switching
is to occur, a switch to a better controller, instead of just better gains, is preferable.

� Superquadric artificial potentials are a superior scheme for local obstacle avoidance. They contain all
the advantages of local schemes (speed of computation, ability to deal with moving environments, etc.)
but are guaranteed to eliminate local minima for a sparsely populated environment. They are, however,
subject to the major shortcoming of local schemes — they are not guaranteed to always find a path to
the goal. Therefore, this scheme, as with all local schemes, would be most useful if integrated with a
higher level trajectory planner.

8.3 Future Directions

The developments and contributions from this dissertation could be built upon in the following ways:

� Environmental parameter identification done in real time through the use adaptive control theory. This
could provide on-line estimation of proper gain values.

� Experimental analysis of explicit force, impedance, (and impact) control with a soft force sensor on the
CMU DD Arm II to answer the following questions:

– Can a better derivative signal really be obtained for force and position when in contact with the
environment?

– Does PD control work better with this sensor?

– Is the performance of other schemes affected?

� Experimental analysis of the same full spectrum of explicit force, impedance, (and impact) control
strategies with different manipulators having different drive systems.

� Experimental implementation of second order impedance control with acceleration feedback instead of
force feedback.

� Integration of tactile sensing with force control to perform the following functions:

– Correct interpretation of inertial force readings when no contact has been made with the environ-
ment.

– Compensation for friction during motion along a surface.

� An implementation of three dimensional superquadric potentials.

� Realtime visual feedback of object position for artificial potential update.



Appendix A

Previous Work in Explicit Force Control

A.1 Force Based Explicit Force Control

Force-based explicit force controllers provide actuation torques which act directly on the manipulator. The
block diagram in Figure 3.1 provides a general description of these types of controllers. The following
schemes have been previously proposed.

A.1.1 Proportional Control

Wu and Paul, ’80 [50] Implemented proportional control of joint torques — essentially explicit force
control in joint space (H = K�p) — on a one DOF manipulator. Active damping was added in joint space as
well.

� = K�p(�c � �m)�K!
_�m: (A.1)

Khatib and Burdick, ’86 [31] Implemented proportional control of force with a feedforward term and
active damping:

f = fc + Kfp(fc � fm) � Kv _xm (A.2)

and the joint torques are obtained from� = JTF

An, ’86 [1] Implemented proportional control of force on 3 DOF direct drive arm with and without domi-
nant pole filtering of error signal and feedforward of commanded force. A direct drive arm has no appreciable
damping and none was added actively. However, passive compliance was used between the stiff end effec-
tor and the stiff environment. It was found that the passive compliance and the dominant pole gave better
performance.

In the Laplace domain this control scheme is represented as:

F = Fc + Kfp

�
a

s+ a

�
(Fc � Fm): (A.3)

Eppinger and Seering, ’86, ’87 [13, 14] Analyzed second, fourth, and sixth order arm / sensor / envi-
ronment models. Their analysis produces a model that is not consistent with that which was experimentally
determined in Chapter 2. This leads to an erroneous prediction about the stability of the force controller. As
discussed in Chapter 2, their analysis may be applicable to a force sensor that is softer and less damped than
the environment.

The control strategy employed is simple proportional control with no feedforward term:

f = Kfp(fc � fm) (A.4)
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This is not practical for real implementation, becausef = 0 when the error is zero. Usually a bias term of
fc is fedforward to eliminate this problem. However, the lack of the feedforward term does not change the
characteristic equations, which are central to their stability analysis.

Youcef-Toumi, ’87 [73] Implemented proportion force control with active damping on a one DOF direct
drive arm. The force command was not fedforward. Active damping was added. Steady-state errors were
reported. Therefore, the control strategy is:

f = Kfp(fc � fm) � Kv _xm (A.5)

Wedel and Saridis ’88 [67] Implemented proportional force control on a six DOF revolute manipulator. A
force feedforward term was used. No active damping was used. Poor results were reported. For completeness,
the controller used is:

f = fc + Kfp(fc � fm) (A.6)

A.1.2 Integral Control

Townsend and Salisbury, ’87 [60] Analyzed the effect of Coulomb friction and stiction on force control
with integral feedback. The controller used is:

f = Kfi

Z
(fc � fm)dt (A.7)

Youcef-Toumi and Gutz, ’89 [74] Implemented integral force control with active damping on a one DOF
arm.

f = Kfi

Z
(fc � fm)dt � Kv _xm (A.8)

Experimental results indicated that indicate that the damping term reduces settling time. Gains selected by
optimizing a linear model of the system (similar to the one presented in Chapter 2) are reported to provide
the best results.

Colgate and Hogan, ’89 [9] Uses a unique ‘passive physical equivalents’ method of analysis to conclude
that integral control is unstable when the manipulator is coupled to stiff environments. This is contrary to the
analytical and experimental results of Chapters 3 and 6.

Khatib and Vischer ’90 [62] Implemented joint space integral torque control. The commanded torque
was also fedforward. The controller used is:

� = �c + K�i

Z
(�c � �m)dt (A.9)

It was noted that this controller was selected because open loop dynamics seemed too fast to be controlled,
so they were low-pass filtered by this controller. This control was implemented to actively eliminate friction
in the joints. (Thus, no active damping was added to the control.) No experiments involving environmental
contact were performed.

A.1.3 Proportional / Integral Control

Raibert and Craig, ’81 [51] Implemented PI control of joint torques on a six DOF manipulator. Com-
manded force values were also fedforward. However, this scheme transforms the Cartesian force errors into
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joint space before multiplying by proportional gains. The mixing of Cartesian force errors with a diagonal
joint space gain matrix was shown by An to sometimes be unstable [2]. The control can be represented as:

� = JT fc + K�pJ
T (fc � fm) + K�i

Z
JT (fc � fm)dt (A.10)

whereJ is the manipulator Jacobian.

Miyazaki and Arimoto, ’84 [46] Implemented PI control on a three DOF manipulator. Active damping
was also used. The results are stable but noisy. The control law is as follows:

f = Kfp(fc � fm) + Kfi

Z
(fc � fm)dt � Kv _xm (A.11)

Eppinger and Seering, ’87 [14] Analyzed PI force control for a linear plant model. No active damping is
added. The controller is:

f = Kfp(fc � fm) + Kfi

Z
(fc � fm)dt (A.12)

Their analysis uses a model that is not consistent with that which was experimentally determined in Chapter 2.
This leads to an erroneous prediction of less stability for PI force control. Chapter 6 has shown experimentally
that this is not true.

A.1.4 Proportional / Derivative Control

Eppinger and Seering, ’87 [14] Analyzed PD force control for a linear plant model. No active damping
is added. The controller is:

f = Kfp(fc � fm) + Kfd

d

dt
(fc � fm) (A.13)

Again, the plant used represents a soft sensor on a manipulator with outer arm dynamics, and in contact with
an environment with no dynamics. (The comparison of this plant with the one considered herein has been
made previously.) The analysis indicates that PD control is stablizing and adds closed loop bandwidth.

Xu, ’88 [71] Implemented PD control on a six DOF arm with a soft force sensor. The controller is again:

f = Kfp(fc � fm) + Kfd

d

dt
(fc � fm) (A.14)

It is reported that PD control provided an improvement over proportional control on the same system.

Khatib and Vischer ’90 [62] Implemented PD torque control. The commanded torque was also fedfor-
ward. The controller used is:

� = �c + K�p(�c � �m) + K�d

d�m
dt

(A.15)

It was noted that when the closed loop dynamics were too fast to be effectively control, then the value of
this control is lost. This control was implemented to actively eliminate friction in the joints. (Thus, no active
damping was added to the control.) No experiments involving environmental contact were performed.

A.1.5 Other

Yoshikawa, ’87 [72] Used unusual ‘Two DOF controller’ scheme. The implemented result has one domi-
nant pole at zero and a lag/lead pair at a relatively high frequency. This is effectively an integral controller.



APPENDIX A. PREVIOUS WORK IN EXPLICIT FORCE CONTROL 131

A.2 Position Based Explicit Force Control

Position based explicit force controllers provide a reference position commanded for an inner loop position
controller. The block diagram in Figure 3.14 provides a general description of these types of controllers. The
following schemes have been previously proposed.

Maples and Becker, ’86 [43] Implemented a scheme which can also be classified as an impedance con-
troller because it has an outer impedance loop (as will be disussed later). However, the novelty of their
approach lies in the use of another position-based loop inside of the force control loop. This innermost loop
is implemented in joint space. Therefore,W is implemented in joint space asW = K�+K!s. Position com-
mands to the innermost loop are a combination of commanded position fedforward from the outer impedance
loop and a position signal from the force compensator. When in contact with the environment, the first of
these signals will be constant, and can therefore be considered zero. The signal from the force compensator
is the result of integration of force error. This implies thatI = 1=cfs. Therefore, the controller formulation
is:

Xc =
1

cfs
(Fc � Fm) (A.16)

� = (K� +K!s)F
�1(Xc) (A.17)

whereF�1 is the inverse kinematics of the manipulator.
Limited experimental results are reported. The measured force signal is noisy and oscillatory, but con-

verges to the desired value.

DeSchutter, ’87 [11] Analyzed and formalized inner position loop force controllers. The three specific
types examined are: position and velocity feedback, position feedback only, and no inner loop feedback. It is
shown that for a system in which the inner position loop contains no integration, the outer force loop must be
of at least Type 1 in order to avoid steady state error.

Ishikawa, Sawada, Kawase, and Takata, ’89 [25] Implemented in six DOF a scheme which can be
classified as an inner loop, position-based, explicit force controller.

Fc = (cfs+ kf )Xr (A.18)

Xc =
1

cfs+ kf
(Fc � Fm) (A.19)

F = Kp(Xc �Xm) (A.20)

Although there is a reference position,Xr, as input to the controller, this is equivalent to specifying a com-
manded forceFc. This controller fits into the position-based force control framework because the force error
is multiplied by the inverse of a first order impedance,I = cfs + kf . This is essentially a low pass filter
similar to that discussed previously. It provides a commanded position,Xc, to the internal position controller.
Active damping is not used, but passive damping is assumed. They report stability of this controller, but do
not discuss accuracy.



Appendix B

The CMU DD Arm II System

B.1 Physical Description

The physical CMU DD Arm II System appears (minus the arm itself) as depicted in Figure B.1. It consists
of over ten microprocessors, a force sensor controller, a tactile sensor, a joystick, a camera, joint resolver
hardware, and six joint motor amplifiers.

The microprocessor boards are of main concern here. They are located in four backplanes: three VME
bus backplanes, and one Multibus backplane. The Sun’s VME backplane contains Sun 3/260 Host computer
and one end of a VME/VME bus repeater. The second VME backplane contains a Mercury MC3200 floating
point processor, at least one Ironics M68020 processor (with 2 serial ports), a parallel IO board, two ends of
VME/VME bus repeaters, and one end of a VME/Multibus repeater. The third VME backplane contains an
Imaging Technology vision system, a Heurikon M68030 processor, and one end of a VME/VME repeater.
The Multibus contains six Texas Instruments TMS32010 joint controllers (320s), one TMS32010 master
controller, and one end of the VME/Multibus repeater.

Since it is mainly a computer system, and it is the computational hardware that we are primarily interested
in here, it is best to describe the system in terms of its architecture.

B.2 The CMU DD Arm II System Architecture

The CMU DD Arm II System has a multi-tier computer architecture as shown in as in Figure B.2. The user
interacts with the system through a Sun 3/260 workstation (d5.ius.cs.cmu.edu) operating under SunOS 4.0.
It is connected to file servers and the CS/RI community over Ethernet. A local disk will soon be added.

The real-time control of the CMU DD Arm II is performed by the M680X0 processor(s) residing on a
VME backplane that is connected to the Sun through a repeater. These processors operate underChimera
II , a real-time, multi-processor, multi-processing operating system [57]. Programs are downloaded to the
M680X0 processor(s) throughChim, an interface program running on the Sun. For example, the real-time
controller and user interface program,Connie, runs on the Ironics M68020 in this way.Conniecommunicates
with the Sun, the Mercury floating point processor, the force sensor, the tactile sensor, the joystick, and the
vision system. It also downloads control code to the Mercury and the 320s, as well as controlling execution
rates on these boards.

The Mercury floating point processor also resides on the second VME bus. It is capable of 20 Mflops
peak, or about 7 Mflops for optimized C code. This board can be accessed by the user through the Sun for
code development, of byConniefor real-time control code execution.

Connected to the second VME bus are a third VME bus with a vision system, and a Multibus with the
320 boards. The vision system is not used for the work in this thesis. The six 320 joint controllers calculate
the three phase torque values needed by the six amplifiers, as well as obtaining the joint position values from
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   joint 2 amplifier
(joint 5 amp in back)

   joint 1 amplifier
(joint 4 amp in back)

   joint 3 amplifier
(joint 6 amp in back)

   velocity,
acceleration
 multiplexer

320 I/O
to amps

seven 320 boards

patch panel

resolver to
   digital
 converter

   400 Hz
  oscillator
for resolvers

  Imaging
Technology
   Vision
  System,
 Heurokon
  (VME 3)

Sun 3/260
  (VME 1)

  Ironics,
  Mercury,
Parallel IO
  (VME 2) Resolvers' power supply

Sun console 
and joystick

Figure B.1: The hardware of the CMU DD Arm II system.

the joint resolvers. The 320 master controller starts and stops the other six 320 boards. Its other functions
have been superceded.

For more detailed information onConnie, Chim, the 320 processors, and the system memory configura-
tion, seeThe Users’ Guide to the DD Arm II.
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Figure B.2: System architecture for the CMU DD Arm II.
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